函数y=cos2x+cosx的最值情况cos2x 有无最大值 cosx 有无最大值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:07:41

函数y=cos2x+cosx的最值情况cos2x 有无最大值 cosx 有无最大值?
函数y=cos2x+cosx的最值情况
cos2x 有无最大值 cosx 有无最大值?

函数y=cos2x+cosx的最值情况cos2x 有无最大值 cosx 有无最大值?
y=2cos^2 x+cosx-1=2(cosx+1/4)^2-9/8
cosx=1,ymax=2(1+1/4)^2-9/8=2
cos=-1/4,ymin=-9/8

cos2x和cosx的最大值都是1。所以函数的最大值为2。

最大值=2
最小值=-1
换元法,令cos2x=t
原方程自己转化一下-》 y=t+(0.5+t/2)^0.5
求一次导数得到:y'=1+0.25*(0.5+t/2)^(-0.5)恒大于0
因此,cos2x=t=1时取最大值;cos2x=t=-1时取最小值

y=cos2x+cosx=2cos^2 x -1+cosx
令z=cosx 则有 y=2z^2+z-1 ,z∈[-1,1]
其函数图像为,顶点在(-1/4,-9/8),与x轴交于(1/2,0)和(-1,0),开口向上,定义域为[-1,1]
的抛物线段。其顶点[-1,1]之间,在根据图像可知:
显然,原函数的最小值为-9/8,最大值为2

cos2x+cosx=2cosx2+cosx-1=2(+1/4)2-9/8
由题意可得当(cosx+1/4)2最大时y最大当(cosx+1/4)2最小时y最小
当cosx为1时y最大当cosx为-1/4时y最xiao