人B国标高一数学必修二练习题.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE的中点1:求证:平面PDC⊥平面PAD如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:49:49

人B国标高一数学必修二练习题.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE的中点1:求证:平面PDC⊥平面PAD如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE
人B国标高一数学必修二练习题.
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE的中点1:求证:平面PDC⊥平面PAD如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE的中点1:求证:平面PDC⊥平面PAD2:求三棱锥P-AEC的体积

人B国标高一数学必修二练习题.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE的中点1:求证:平面PDC⊥平面PAD如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=2,BC=4,E为DE
(1)根据PA⊥平面ABCD,得到PA⊥CD,结合AD⊥CD可得CD⊥平面PAD,因为CD是平面PDC内的直线,所以平面PDC⊥平面PAD
(2)你数据可能有问题 因为如果PA=PB的话 那PA就不垂直底面了,你再看看

在该题中,如果PA⊥平面ABCD,那么PA≠PB=2,而且E为DE的中点不对

是好孩子自己做