设向量a=(sinα,2),向量b=(2sinα,cosα).试求向量a•向量b的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:20:25
设向量a=(sinα,2),向量b=(2sinα,cosα).试求向量a•向量b的取值范围
设向量a=(sinα,2),向量b=(2sinα,cosα).试求向量a•向量b的取值范围
设向量a=(sinα,2),向量b=(2sinα,cosα).试求向量a•向量b的取值范围
a'b=2sin^2a+2cosa=2-2cos^2a+2cosa=-2[(cosa-1/2)^2-5/4]所以为【-2,5/2]
设向量a=(sinα,2),向量b=(2sinα,cosα).试求向量a•向量b的取值范围
已知向量a=(1,2),b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).求向量/向量a-向量b/的最大值
设向量a=(3/2,sinα),向量b=(cosα,1/3),且向量a平行向量b,则锐角α=?
设a向量=(3/2,sinα),b向量=(cosα,1/3),且a向量平行于b向量,则锐角α为
设向量a,向量b满足|向量a|=|向量b|=1,向量a●向量b=-1/2则|向量a 2向量b|等于
高中数学向量简单问题已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向量a⊥向量b,问:是否存在实数t,使得向量(a-b)和向量m的夹角的夹角为π/4,若存在,请求出t;若不存在,
设向量a与b的夹角为θ,向量a=(2,-1),向量a+2向量b=(4,5)则sinθ等于
定义向量a×向量b模=向量a模向量b模sinα,其中α为向量b与向量b的夹角,定义:I向量a×向量bI模=向量a模×向量b模×sinθ,其中θ为向量a与向量b的夹角,若向量a模=2,向量b模=5,向量a·向量b=-6,则I向量a
已知向量a=(1,2),b=(cosα,sinα),设向量m=向量a+t向量b(t为实数),若向量a⊥向量b且向量a-向量b与向量m的夹角为π/4,则t=?
已知向量a=(1,2),向量b=(cosα,sinα),设向量m=向量a+t向量b(t为实数).若向量a⊥向量b,问:是否存在实数t,使得向量(a-b)和向量m的夹角的夹角为π/4,若存在,请求出t;若不存在,请说明理由.
设向量a,向量b满足|向量a|=1,|向量a-向量b|=根号3,向量a*(向量a-向量b)=向量0,则|2向量a+向量b|=( ).求详解,要步骤.谢谢.
2.向量的一道数学题设向量a=(cosα,-1)向量b(2,sinα)若向量a⊥向量b,则tan(α-π/4)=?
设向量a=(4cosα,sinα) 向量b=(cosβ,-4sinβ)若向量a与向量b-2c垂直 求tan(α+β)
设向量a,向量b为不共线的两个向量向量c=向量a+λ*向量b,向量d=(向量b-2*向量a)且向量c,向量d共线,求λ的值
设向量a=(2,-3),向量b=(-1,1),向量co是向量a-向量b同向的单位向量,则向量co的坐标是多少?
设向量a/b是不共线的两个非0向量,1.若向量OA=2向量a-向量b,向量OB=3向量a+向量b,向量OC=向量a-3向量b求证A,B,C三点共线2,若8向量a+k向量b与k向量a+2向量b共线求k3设向量OM=m向量a,向量ON=n向量b,向量OP=
在长方形ABCD中,设向量AB=向量A,向量AD=向量B,向量AC=向量C在长方形ABCD中,设向量AB=向量a,向量AD=向量b,向量AC=向量C,且向量a的绝对值=2,则绝对值(向量a-向量b+向量c)=_____
设向量a=(4cosα,sinα),向量b=(sinβ,-4cosβ),向量c=(cosβ,-4sinβ)(1)若向量a与向量b-2c垂直,求tan(α+β)的值(2)求|b向量+c向量|的最大值(3)若tanαtanβ=16,求证向量a平行于向量b