已知抛物线y=x2-2x-3,若点P(-2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是____ 答案是(4,5)请问为什么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:30:20
已知抛物线y=x2-2x-3,若点P(-2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是____ 答案是(4,5)请问为什么?
已知抛物线y=x2-2x-3,若点P(-2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是____ 答案是(4,5)
请问为什么?
已知抛物线y=x2-2x-3,若点P(-2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是____ 答案是(4,5)请问为什么?
抛物线对称轴:y=1
所以答案是(4,5)
已知抛物线y=x2-2x+m与x轴交于点A(x1,0),B(x2,0)(x2>x1)(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)Q2(-3,q2)都在抛物线y=ax
已知抛物线y=x^2+2x+m与x轴相交于点A(x1,0)、B(x2,0),(x2>x1)(1)已知点P(-1,2)在抛物线y=x^2-2x+m上,求m的值;(2)若抛物线y=ax^2+bx+m与抛物线y=x^2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax^2+bx+m上,
已知抛物线y=x2+(b-1)x+c经过点p(-1,-2b).已知抛物线y=x2+(b-1)x+c经过点p(-1,-2b).若b>3,过点P作直线PA⊥y轴,叫y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.
已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)1.若点P(-1,2)在抛物线y=x平方-2x+m上,求M的值2.若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关于y轴对称点Q1(-2,q1) Q2(-3,q2)都在抛物线y=ax平方+b
已知点P是抛物线y=x2上到直线2x-y-4=0抛物线y=x2上的P点到直线2x-y=4距离最近的点的坐标是
已知抛物线y=x2-2x-3,若点P(-2,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是____ 答案是(4,5)请问为什么?
已知抛物线y=x2-2x-3的顶点为D,点P、Q是抛物线上的动点,点C位直角坐标系内一点,若四边形DPCQ是正方形,求正方形的面积
已知抛物线y=x2+(b-1)x+c经过点p(-1,2b).(1)求b+c的值……已知抛物线y=x2+(b-1)x+c经过点p(-1,2b).(1)求b+c的值;(2)若b=3,求这条抛物线的顶点坐标;(3)若b>3,过点P作直线PA⊥y轴,叫y轴于点A,交抛
已知抛物线y=x²-2x+m与x轴交于点A(x1,0),B(x2,0)(x1>x2).(1)若点P(-1,2)在抛物线y=x²-2x+m上,求m的值.(2)若抛物线y=ax²-2x+m关于y轴对称,点Q1(-2,q1),Q2(-3,q2)都在抛物线y=ax²+bx+m
数学二次抛物线已知:抛物线y=x²+(b-1)x+c经过P(-1,-2b)已知抛物线y=x2+(b-1)x+c经过点p(-1,-2b).(1)求b+c的值;(2)若b=3,求这条抛物线的顶点坐标;(3)若b>3,过点P作直线PA⊥y轴,叫y轴于
数学二次抛物线已知:抛物线y=x²+(b-1)x+c经过P(-1,-2b)已知抛物线y=x2+(b-1)x+c经过点p(-1,-2b).(1)求b+c的值;(2)若b=3,求这条抛物线的顶点坐标;(3)若b>3,过点P作直线PA⊥y轴,叫y轴于
已知点P为抛物线y=x2-2/3x上的动点 求点P到直线y=4/3x-2的最短距离
一道抛物线上动点的问题 如图,已知点P是抛物线y=1/2(x2+x)上的任意一点,记点P到直线y=-5/8距离为d1,点P与点F(-1/2,3/8)的距离为d2.(1)证明:d1=d2 (2)若直线PF交此抛物线于另一点Q(异于P点),
已知一元二次方程x2+px+q+1=0的一根为2.(1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q+与x轴总有交点;(3)当p=-1时,(2)中的抛物线与x轴交于A,B两点,与y轴交于C点,A在B的左侧,若P点在抛物线上,当S△BPC=4
已知抛物线y=x2+(b-1)x+c经过点p(-1,-2b).(1)求b+c的值;(2)若b=3,求这条抛物线的顶点坐标;(3)若b>3,过点P作直线PA⊥y轴,叫y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函
已知抛物线y=ax^2 +bx+c 与X轴交于A(X1,0) B(X2,0) X1小于X2,与Y轴交于点C 抛物线顶点为P 若A(-1,0) P(1,-4) (1)求抛物线的解析式 (2)设点Q在1所求的抛物线上且满足QB=QC 求Q点坐标 (3)
已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1) 若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关
若点p是抛物线Y=X2上任意一点,则点P到直线Y=X-2的最小距离为