设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:56:22
设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?
设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?
设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?
dim(V) = 3+2+1 = 6.
对称矩阵主对角线下方的元素完全受控于主对角线上方的元素
所以3阶对称矩阵的自由度为 3+2+1=6
设V是数域F上3阶对称阵组成的线性空间,则dim(V)=?
线性空间2设V^(N*N),V1.V2分别为p上所有n级对称,反对称矩阵组成的子空间证明 v=V1+V2(直和的意思,加号,需要详细证明
设V是数域F上n阶上三角阵所成的集合,证明:在矩阵的加法及数乘下V是线性空间并求出V的维数
高等代数反对称双线性函数的这个结论怎么得来 的 有一个定理是:设f(α,β)为n维线性空间V反对称双线性函数的这个结论怎么得来 的 有一个定理是:设f(α,β)为n维线性空间V 上的反对称双线性
证明是线性空间设V是数域F上的线性空间,W是V的一个子空间,U={σ是V的一个线性变换|σ(V)是W的子集}.证明:U关于通常的线性变换的加法与数量乘积是F上的线性空间.
设U是所有n阶实矩阵构成的空间,其中的对称矩阵构成线性子空间V,反对称矩阵构成线性子空间W.证明U=V⊕W麻烦老师了!
设V是数域P上的n维线性空间,W是V的子空间,证明:W是某个线性变换的核.
设V是数域F上任意线性空间,B是V上一个线性变换,F(x)是数域F上一元多项式集合,证明:设d(x)是f(x),g(x)
此外,对线性空间的定义理解比较模糊,设V是数域F上的线性空间,V1V2是V的子空间,求证V1+V2也是V的子空间证明:考察集合V1+V2,其空是明显的.对于任意的α,β∈V1+V2,设α=α1+α2,α1∈V1,α2∈V2,β=β1+β
有关欧氏空间的一道线性代数题设V是一个欧氏空间(n维实内积空间),f:v->v是一个映射.如果对任意的a,b属于V,有(f(a),f(b))=(a,b),那么f是V->V上的一个线性映射.问:上述命题正确吗?如果正确,给出证
设V是由n阶实对称矩阵按通常的矩阵加法与数乘构成的线性空间,求V的维数和V的一组基,哪位大神帮帮忙
设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关于t的非平凡不变子空间.
设W为数域F上的n维线性空间V的子集合,若W中元素满足1、 若α,β∈W,则α+β∈W;2、 若α∈W,λ∈F,则λα∈W.则容易证明:W也构成数域F上的线性空间.称W是线性空间V的一个线性子空间.这个到底是
高等代数线性空间,设v为p上的线性空间,v≠{0},v1v2是v设v为p上的线性空间,v≠{0},v1v2是v上的两个真子空间,v1v2互不包含,证明,v1并v2≠v
关于复数域上的线性空间:希尔伯特空间里两个向量内积的运算和欧氏空间里是否相同?关于复数域上的线性空间:设U是数域K(实或复数域)上的线性空间,若x,y属于U,设x=(a,b,c);y=(d,e,f).f都是
设W是线性空间V的一个子空间,A是V上的线性变换,W是A的不变子空间的条件是?
高等代数线性映射设R为实数域,V= 图片 是R^3*3的一个子空间,则V的维数等于多少? 设F是数域,映射a:F^2*2→F^2:(ab)→(a+2b+4c,-a+2b-4d)是线性映射.则dimKer a等于多少?
设б是数域F上的线性空间V的线性变换,f(x)=g(x)h(x)是F上的多项式,有f(б)=θ且(f(x),g(x))=1,求证V=kerg(б)直和kerh(б)