X1-2X2-X3+X4=02X1+X2-X3+2X4-3X5=03X1-2X2-X3+X4-X5=02X1-5X2+X3-2X4+2X5=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:52:04

X1-2X2-X3+X4=02X1+X2-X3+2X4-3X5=03X1-2X2-X3+X4-X5=02X1-5X2+X3-2X4+2X5=0
X1-2X2-X3+X4=0
2X1+X2-X3+2X4-3X5=0
3X1-2X2-X3+X4-X5=0
2X1-5X2+X3-2X4+2X5=0

X1-2X2-X3+X4=02X1+X2-X3+2X4-3X5=03X1-2X2-X3+X4-X5=02X1-5X2+X3-2X4+2X5=0
我只能给你说说方法:
设n为未知量个数,r为矩阵的秩.
只要找到齐次线性方程组的n-r 个自由未知量,
就可以获得它的基础解系.
具体地说,我们先通过初等行变换把系数矩阵化为阶梯形,那么阶梯形的非零行数就是系数矩阵的秩.
把每一个非零行最左端的未知量保留在方程组的左端,其余n-r 个未知量移到等式右端,
再令右端 n-r个未知量其中的一个为1,其余为零,这样可以得到 n-r个解向量,这 n-r个解向量构成了方程组的基础解系.
做题关键是掌握方法:
一个简单的例子:x1+x2=0
显然x2可以是自由未知量
变化为x1=-x2
令x2=1,则x1=-1
基础解系就是(-1,1)了.
我想这道题你会做了吧!

1 -2 -1 1 0
2 1 -1 2 -3
3 -2 -1 1 -1
2 -5 1 -2 2
1 -2 -1 1 0
0 5 1 0 -3
0 4 2 -2 -1
0 -1 3 -4 2
1 -2 -1 1 0
0 0 16 -20 7
0 0 14 -18 7
0 1 -3 4 -...

全部展开

1 -2 -1 1 0
2 1 -1 2 -3
3 -2 -1 1 -1
2 -5 1 -2 2
1 -2 -1 1 0
0 5 1 0 -3
0 4 2 -2 -1
0 -1 3 -4 2
1 -2 -1 1 0
0 0 16 -20 7
0 0 14 -18 7
0 1 -3 4 -2
1 0 -7 9 -4
0 0 1 -1 0
0 0 0 -4 7
0 1 0 1 -2
1 0 0 0 -1/2
0 0 1 0 -7/4
0 0 0 1 -7/4
0 1 0 0 -1/4
所以基础解系是
x=[2/7 1 1 1/7]T
解为 k[2/7 1 1 1/7]T
这分可不容易啊

收起

线性方程组怎么解?x1+x2+2x3-x4=02x1+x2+x3-x4=02x1+2x2+x3+2x4=0 求解齐次线性方程组...X1+X2+2X3-X4=0{ 2X1+X2+X3-X4=02X1+2X2+X3+2X4=0 X1-X2+X3-X4=1X1-X2-X3+X4=02X1-2X2-4X3+4X4=-1麻烦高人用高斯消元法解下这个方程 X1-2X2-X3+X4=02X1+X2-X3+2X4-3X5=03X1-2X2-X3+X4-X5=02X1-5X2+X3-2X4+2X5=0 判断齐次线性方程组解的情况;若有非零解,求其通解.X1+X2-X3+2X4=02X1-2X2+2X3-3X4=05X1+X2-X3+X4=03X1-X2+3X3-X4=0 matlab习题,解下列方程组x1+x2+x3+x4=02x1+3x2-x3-x4=23x1+2x2+x3+x4=53x1+6x2-x3-x4=4; 2X1+X2-X3+X4=13X1-2X2+X3-3X4=4X1+4X2-3X3+5X4=-2X1+X2+X3+X4=0X1+2X2+4X3+4X4=02X1+3X2+5X3+5X4=0 求解线性代数----求齐次线性方程组的通解x1+x3-5x4=02x1+x2-3x4=0x1+x2-x3+2x4=0 用初等行变换来解下列线性方程组(1)2x1-x2+3x3=3 3x1+x2-5x3=0 4x1-x2+x3=3 x1+3x2-13x3=-6(2) x1-2x2+x3+x4=1 x1-2x2+x3-x4=-1 x1-2x2+x3-5x4=5(3) x1-x2+x3-x4=1 x1-x2-x3+x4=0 x1-x2-2x3+2x4=-1/2 x1+x3+x4=7 x2+x3+x4=6 x2+x1+x4=8 x2+x1+x3=9 求x1 x2 x3 x4 是多少? 用基础解系表示线性方程组的全部解2X1-X2+X3-X4=0 2X1-X2-3X4=0X2+3X3-6X4=02X1-2X2-2X3+5X4=0 求解线性方程组 2X1+X2-X3+X4=1 4X1+2X2-2X3+2X4=2 2X1+X2-X3-X4=1 的通解 求非齐次线性方程组的通解:2x1+x2-x3-x4=1;2x1+x2+x3-x4=1;4x1+2x2+x3-2x4=2 求下列线性方程组的通解:2x1+x2-x3+x4=1,4x1+2x2-2x3+x4=2,2x1+x2-x3-x4=1 解方程组(x1+2x2+2x3+x4=0,2x1+x2-2x3-2x4=0,x1-x2-4x3-3x4=0) 解非线性方程组 x1+2x2+2x3+x4=0 2x1+x2-2x3-2x4=0 x1-x2-4x3-3x4=0 解方程组 x1+2x2+2x3+x4=0 2x1+x2-2x3-2x4=0 x1-x2-4x3-3x4=0 解方程组X1-2x2+3x3-x4=1,3x1-x2+5x3-3x4=2,2x1+x2+2x3-2x4=3