求方程(x+y)/(x^2-xy+y^2)=3/7的整数解1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:30:12

求方程(x+y)/(x^2-xy+y^2)=3/7的整数解1
求方程(x+y)/(x^2-xy+y^2)=3/7的整数解
1

求方程(x+y)/(x^2-xy+y^2)=3/7的整数解1
(x+y)/(x^2-xy+y^2)=3/7
设x+y=3t
x^2-xy+y^2=7t
t为整数
于是
x^2+2xy+y^2=9t^2
3xy=9t^2-7t
(x-y)^2=(28t-9t^2)/3
则t是3的倍数,于是,设t=3k
则(x-y)^2=28k-27k^2=k(28-27k)≥0
又k是整数,于是k=0或1
当k=0时,分母为0,舍弃,于是k=1
则x-y=±1,x+y=3t=9k=9
x=4,y=5或x=5,y=4

(x+y)/(x^2-xy+y^2)=3/7
(x+y)^2/(x^3+y^3)=3/7
(x^3+y^3)/(x+y)^2=7/3
(x^3+y^3)/(x+y)^2=189/81
(x^3+y^3)=189
(x+y)^2=81
x+y=±9
x=5
y=4

x=4
y=5

(x+y)/(x^2-xy+y^2)=x^3+y^3=3/7 x y 要是整数的话它们各自的三次幂之和怎么可能是分数啊 还真不知道 有答案之后告诉我一下吧 还真得好好请教一下