线性代数题目,判断正误并说明原因:若矩阵为正交矩阵,a1,a2,a3...a5为正交向量组,则Aa1,Aa2...Aa5也为正交向量组.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:26:04

线性代数题目,判断正误并说明原因:若矩阵为正交矩阵,a1,a2,a3...a5为正交向量组,则Aa1,Aa2...Aa5也为正交向量组.
线性代数题目,判断正误并说明原因:
若矩阵为正交矩阵,a1,a2,a3...a5为正交向量组,则Aa1,Aa2...Aa5也为正交向量组.

线性代数题目,判断正误并说明原因:若矩阵为正交矩阵,a1,a2,a3...a5为正交向量组,则Aa1,Aa2...Aa5也为正交向量组.
Aa1点乘Aa2 表示成矩阵的形式 就是 (Aa1)'Aa2=a1'A'Aa2 ’代表转置,正交阵转置就是逆,所以
a1'A'Aa2=a1‘Ia2=0,I为单位阵, 因为a1,a2正交. 开始那两个向量可以任意取所以~~