平行四边形的性质

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:51:47

平行四边形的性质
平行四边形的性质

平行四边形的性质
特殊四边形要点整理
一、平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:
平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分.
判定:
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形的
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
二、矩形:
定义:有一个角是直角的平行四边形叫做矩形.
1.矩形的性质
(1)具有平行四边形的所有性质.
(2) 特有性质:四个角都是直角,对角线相等.矩形是轴对称图形.
2.矩形的判定
(1) 定义:有一个角是直角的平行四边形叫做矩形.
(2)定理1:有三个角是直角的四边形是矩形.
(3)定理2:对角线相等的平行四边形是矩形.
三、菱形
1.定义:
有一组邻边相等的平行四边形叫做菱形.
2.菱形的性质
(1)具有平行四边形的一切性质.
(2)菱形的四条边都相等.
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角.
(4)菱形是轴对称图形.
(5)菱形面积=底×高=对角线乘积的一半.
3.菱形的判定
(1)定义:有一组邻边相等的平行四边形叫做菱形.
(2)定理1:四边都相等的四边形是菱形.
(3)定理2:对角线互相垂直的平行四边形是菱形.
四、正方形
1.定义:
正方形的定义我们可以分成两部分来理
(1) 有一个角是直角的菱形叫做正方形.
(2) 有一组邻边相等的矩形叫做正方形.
2.正方形性质
正方形具有四边形、平行四边形、矩形、菱形的一切性质.
(1)边——四边相等,邻边垂直.
(2)角——四角都是直角.
(3)对角线——①相等②互相垂直平分③每条对角线平分一组对角.
(4)是轴对称图形,有4条对称轴.
3、\x09正方形的判定方法:
(1)判定一个四边形为正方形主要根据定义,途径有两条:
①先证它是矩形,再证有一组邻边相等或对角线垂直.
②先证它是菱形,再证它有一个角为直角或对角线相等.
五、正方形与矩形、菱形、平行四边形的关系:
矩形、菱形、正方形都是特殊的平行四边形,其中正方形既是特殊的矩形,又是特殊的菱形.矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图.
六、中点四边形与原四边形的关系:
依次连接对角线相等的四边形各边中点所得四边形是菱形;
依次连接对角线互相垂直的四边形各边中点所得四边形是矩形;
依次连接对角线相等且垂直的四边形各边中点所得四边形是正方形;
七、等腰梯形
1、等腰梯形的性质:等腰梯形两腰相等;等腰梯形同一底上的两个角相等;等腰梯形对角线相等.
2、等腰梯形判定:
两腰相等的梯形是等腰梯形; 同一底上两个角相等的梯形是等腰梯形.

老师没教你这头猪,SB,WC,HG 一、平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:
平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分.
判定:
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形的
一组对边平行且相...

全部展开

老师没教你这头猪,SB,WC,HG 一、平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质:
平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分.
判定:
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
两组对角分别相等的四边形是平行四边形的
一组对边平行且相等的四边形是平行四边形.
对角线互相平分的四边形是平行四边形.
二、矩形:
定义:有一个角是直角的平行四边形叫做矩形.
1.矩形的性质
(1)具有平行四边形的所有性质.
(2) 特有性质:四个角都是直角,对角线相等.矩形是轴对称图形.
2. 矩形的判定
(1) 定义:有一个角是直角的平行四边形叫做矩形.
(2)定理1:有三个角是直角的四边形是矩形.
(3)定理2:对角线相等的平行四边形是矩形.
三、菱形
1. 定义:
有一组邻边相等的平行四边形叫做菱形.
2.菱形的性质
(1)具有平行四边形的一切性质.
(2)菱形的四条边都相等.
(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角.
(4)菱形是轴对称图形.
(5)菱形面积=底×高=对角线乘积的一半.
3.菱形的判定
(1)定义:有一组邻边相等的平行四边形叫做菱形.
(2)定理1:四边都相等的四边形是菱形.
(3)定理2:对角线互相垂直的平行四边形是菱形.
四、正方形
1. 定义:
正方形的定义我们可以分成两部分来理
(1) 有一个角是直角的菱形叫做正方形.
(2) 有一组邻边相等的矩形叫做正方形.
2.正方形性质
正方形具有四边形、平行四边形、矩形、菱形的一切性质.
(1)边——四边相等,邻边垂直.
(2)角——四角都是直角.
(3)对角线——①相等②互相垂直平分③每条对角线平分一组对角.
(4)是轴对称图形,有4条对称轴.
3、\x09正方形的判定方法:
(1)判定一个四边形为正方形主要根据定义,途径有两条:
①先证它是矩形,再证有一组邻边相等或对角线垂直.
②先证它是菱形,再证它有一个角为直角或对角线相等.
五、正方形与矩形、菱形、平行四边形的关系:
矩形、菱形、正方形都是特殊的平行四边形,其中正方形既是特殊的矩形,又是特殊的菱形.矩形、菱形、正方形都是特殊的平行四边形,它们的包含关系如图.

六、中点四边形与原四边形的关系:
依次连接对角线相等的四边形各边中点所得四边形是菱形;
依次连接对角线互相垂直的四边形各边中点所得四边形是矩形;
依次连接对角线相等且垂直的四边形各边中点所得四边形是正方形;
七、等腰梯形
1、等腰梯形的性质:等腰梯形两腰相等;等腰梯形同一底上的两个角相等;等腰梯形对角线相等。
2、等腰梯形判定:
两腰相等的梯形是等腰梯形; 同一底上两个角相等的梯形是等腰梯形

收起

两组对边平行且相等,两组对角相等。

角:1.邻角互补。 2.对角相等。
边:1.对边平行且相等。
对角线:1.平行四边形的对角线互相平分。
其他:1.平行四边形的面积等于底乘于高。
2.平行四边形的周长等于邻边和的二倍。
3.平行四边形被对角线分成的三角形面积相等。
4.对角线的一半和平行四边形的邻边构成一个三角形,这个三角形如果...

全部展开

角:1.邻角互补。 2.对角相等。
边:1.对边平行且相等。
对角线:1.平行四边形的对角线互相平分。
其他:1.平行四边形的面积等于底乘于高。
2.平行四边形的周长等于邻边和的二倍。
3.平行四边形被对角线分成的三角形面积相等。
4.对角线的一半和平行四边形的邻边构成一个三角形,这个三角形如果不存在了,这个四边形就不存在了。
5.平行线加角平分线等于等腰三角形。
6.对角的角平分线互相平行,邻角的角平分线互相垂直。
7.长高/短高等于长边/短边。

收起

:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分

布吉岛