设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:55:32

设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2
设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2

设abc都是正实数,证明a/b+c+b/a+c+c/a+b大于等于3/2
首先你题目抄错了,分母都没有套上括号!
证明一:左边
=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3
=0.5×(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]-3
≥0.5×{3×[(a+b)(b+c)(c+a)]^1/3}×{3×[1/(a+b)×1/(b+c)×1/(c+a)]^1/3}-3
=0.5×3×3-3
=3/2
所以c/(a+b)+a/(b+c)+b/(c+a)≥3/2
证明二: