1,2,3...100这100个自然数的算术平方根和立方根中,无理数的个数是多少?RT.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:30:35
1,2,3...100这100个自然数的算术平方根和立方根中,无理数的个数是多少?RT.
1,2,3...100这100个自然数的算术平方根和立方根中,无理数的个数是多少?
RT.
1,2,3...100这100个自然数的算术平方根和立方根中,无理数的个数是多少?RT.
开平方开不尽或开立方开不尽的就是无理数.
(1)
开平方开的尽的:1^2、2^2、3^2、……10^2共10个
(2)
开立方开的尽的:1^3、2^3、3^3、4^3共4个
(3)
开平方、开立方都开的尽的:1^6、2^6
因此不重复计算的话,算术平方根和立方根中有理数的个数有:10 + 4 - 2 = 12
无理数的个数 = 100 - 12 = 88 个
1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有 186个.∵12=1,22=4,32=9,…,102=100,
∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,
∴无理数有90个;
∵13=1,23=8,33=27,43=64<100,53=125>100,
∴1,2,3…,100这100个自然数的立方根中,有理数有...
全部展开
1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有 186个.∵12=1,22=4,32=9,…,102=100,
∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,
∴无理数有90个;
∵13=1,23=8,33=27,43=64<100,53=125>100,
∴1,2,3…,100这100个自然数的立方根中,有理数有4个,
∴无理数有96个;
∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.
收起
∵12=1,22=4,32=9,…,102=100,
∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,
∴无理数有90个;
∵13=1,23=8,33=27,43=64<100,53=125>100,
∴1,2,3…,100这100个自然数的立方根中,有理数有4个,
∴无理数有96个;
∴1,2,3…,100这100个自然数的算...
全部展开
∵12=1,22=4,32=9,…,102=100,
∴1,2,3…,100这100个自然数的算术平方根中,有理数有10个,
∴无理数有90个;
∵13=1,23=8,33=27,43=64<100,53=125>100,
∴1,2,3…,100这100个自然数的立方根中,有理数有4个,
∴无理数有96个;
∴1,2,3…,100这100个自然数的算术平方根和立方根中,无理数共有90+96=186个.
故答案为:186.
收起
此题问的是无理数个数不是100内自然数的个数所以此题错解。
100*2=200
∵√100=10∴有10个是有理数,无理数为100-10=90个
又∵100的立方根=4.6
∴100内有4个立方根是有理数,无理数为100-4=96个
90+96=186个
这是2010年泰安的中考题
1—100中可以完全开平方的数有10个.即1、4、9、14、25、36、49、64、81、100。
1—100中可以完全开立方的数有4个 即 1、8、27、64。
平方根无理数有100-10=90个
立方根无理数有100-4=96个
即90+96=186个
这道题首先要理解是求这100个数的平方根和立方根中有多少个是无理数...
全部展开
这是2010年泰安的中考题
1—100中可以完全开平方的数有10个.即1、4、9、14、25、36、49、64、81、100。
1—100中可以完全开立方的数有4个 即 1、8、27、64。
平方根无理数有100-10=90个
立方根无理数有100-4=96个
即90+96=186个
这道题首先要理解是求这100个数的平方根和立方根中有多少个是无理数,而不是求有多少个数的平方根和立方根是无理数。要看清题,求的是根中有多少个无理数。
收起