设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:33:14
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
dy f'(arcsin(1/x))
— = - ———————
dx x√(x^2-1)
dy/dx=f'(arcsin(1/x))*(1/(1-(1/x^2)))*(-1/x^2)
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)
设f(x)为可导函数,求dy/dx,(1)y=f(sin^2x)+f(cos^2x)
设函数f(x)可导,且y=f(x2),则 dy/dx=?
设f(x)可导,求dy/dx y=sin f(x²)
设f(u)为可导函数,求dy/dx:(1) y=f(x^3) ; (2) y=f(e^x+x^e); (3) y=f(e^x)e^f(x)
设f(x)可导,且y=f(x²)+f[f(x)],求dy/dx
设函数f(x)可导,y=f(x的3次方)则dy/dx是?
设f(x)可导,求下列函数的导数dy/dx.y=f(e^(x^2)); 我做的结果是
设由方程x-z-yf(z)=0所确定的隐函数g(x,y),其中f可导,求dz/dx dz/dy
设F(x)可导,y=f(x^2),则dy/dx=?
设y=f(sinx),其中f为可导函数,求dY
设函数Y=F(X)由方程Y=1+YX决定,求DY/DX
设f(u)可导,y=f(secx^2),dy/dx为多少
设f(x)可导,且f'(0=1,又y=f(x^2+sin^2x)+f(arctanx),求dy/dx /x=0
设函数f (e^x十x^e)’f(u)关于变量u可导i,求dy/dx