设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.(提示 中值定理的 综合运用)应为设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:17:08

设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.(提示 中值定理的 综合运用)应为设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈
设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
(提示 中值定理的 综合运用)
应为设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(ε)=-f(ε)/ε.

设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.(提示 中值定理的 综合运用)应为设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈
证明:设g(x)=xf(x),
则g'(x)=xf'(x)+f(x) ,g(1)=1f(1)=0 ,g(0)=0*f(0)=0
所以g(x)在[0,1]上连续,在(0,1)内可导且g(0)=g(1),由罗尔中值定理得:
存在一点ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0
所以f'(ε)=-f(ε)/ε