设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:31:21
设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
e^h(x)替换f(x)
要证明的式子会变成e^(∫(0→1)h(x)dx)
设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)
设函数f(x)在闭区间[0,1]上连续,且0
设函数f(x)在区间[0,1]上连续,切0
设函数y=f(x)在[0,1]上连续,且0
设函数y=f(x)在[0,1]上连续,且0
高数证明题:设函数f(x)在区间[0,1]上连续,证明
高数题求解.设函数f(x)在0到1上闭区间连续,证明
设函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设函数f(x)是区间[a,b]上的减函数,且恒取正值,试讨论下列函数在区间[a,b]上的单调性(4)y=1-根号下f(X)
设函数f(x)在(01]上连续,且极限lim->0+f(x)存在,证明函数f(x)在(0,1]上有界
设函数f(x)在[a,b]上连续,在(a,b)内可导(0
一道高数题,设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x)∫(0,1) f(x)dx,则f(x)=?设函数f(x)在[0,+∞)上连续,且f(x)=x(e^-x)+(e^x) ∫(0,1) f(x)dx ,则f(x)=
设函数f(x)在[0,无穷)上连续可导,且f(0)=1,|f'(x)|0时,f(x)
设f(x)在〔a,b〕上为正值的可导函数,证明,存在c(a
一个关于中值定理的题,设函数f(x)在[1,e]上连续,0
设函数f(x)在[0,1]上连续,且满足f(x)=x^2-3x∫f(t)dt(上限为1,下限为0),试求f(x) 可写在纸上拍下来,