已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:44:07

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.
已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.
因为 A^k = 0
所以 (E-A)(E+A+A^2+...+A^(k-1))
= E+A+A^2+...+A^(k-1)
-A-A^2-...-A^(k-1)-A^k
= E - A^k
= E
所以 E-A 可逆,且 (E-A)^-1 = E+A+A^2+...+A^(k-1)

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E+A可逆 已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵. 证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0 证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0 A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0 设A为n阶方阵,B为n阶可逆阵,若存在正整数k使A^k=O,则矩阵方程AX=XB仅有零解方程两边左乘A^(k-1),A^(k)X=A^(k-1)XB=O对A^(k-1)XB=O右乘B的逆矩阵,A^(k-1)X=O由于A^(k-1)不恒为O,所以X=O这样证明对吗. 矩阵理论(正规矩阵及Schur分解这一节的题)证明:对每个实对称阵A,都可以找到一个对称方阵S使S^3=A,更一般地,存在对称实方阵S使S^2k-1=A(k为正整数) 证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0 请问老师:n阶方阵A的k次方为单位阵,k为正整数,则A一定可以对角化吗?怎么证明? 初二(1)是否存在正整数m,n使m(m+2)=n(n+1) (2)设k(k≥3)是给定的正整数,是否存在m,n使m(m+k)=n(n+1) A为方阵,它的每一行每一列都只有一个元素非零,且为1或-1,证明存在正整数k,A^k=E(单位矩阵) 证明:对任意给定的正整数n,存在由若干个1和若干个0组成的正整数a,使n|a 设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1) 线性代数:请给出原因,13.设方阵A满足A^k=E,这里k为正整数,则矩阵A的逆A-1=__________. 有谁帮我解决一道基础的数论题a,b,...,k为给定正整数,求1,2,...n(n为给定正整数)中与a,b,...,k皆互素的数的个数! 给定A为三阶方阵,求对角化的正交方阵P 李永乐全书上关于求数列极限的一个定理p12页,若对任意数列{an},若满足|an-A|《k|a(n-1)-A| (n=2,3,.),其中0无穷)an就等于A了?,但是书上定义不是说对任意给定的e,总存在正整数N,当n>N时,不等式|xn-a|无 设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆