已知数列{an}的前n项和Sn=an^2+bn+c(n∈N*),写出{an}是等差数列的充要条件加以证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:59:33
已知数列{an}的前n项和Sn=an^2+bn+c(n∈N*),写出{an}是等差数列的充要条件加以证明
已知数列{an}的前n项和Sn=an^2+bn+c(n∈N*),写出{an}是等差数列的充要条件
加以证明
已知数列{an}的前n项和Sn=an^2+bn+c(n∈N*),写出{an}是等差数列的充要条件加以证明
a(1) = S(1) = a + b + c.
n > 1,
a(n) = S(n) - S(n-1) = an^2 + bn + c - a(n-1)^2 - b(n-1) - c
= 2na + b - a
a(n+1) - a(n) = 2a,n = 2,3,...
若{an}是等差数列,
则,
a(2) - a(1) = 4a + b - a - a - b - c = 2a - c = 2a,
c = 0.
若
c = 0,
则,
a(2) - a(1) = 2a - c = 2a = a(n+1) - a(n),n = 2,3,...
{an}是等差数列.
因此
c = 0是{an}是等差数列的充要条件.
已知数列{an}的前n项和为Sn,an+Sn=2,(n
一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An
已知数列an的前n项和为sn 若sn=2n-an,求an
已知数列{an}的前n项和Sn=n2+2n,则an=?
已知数列{an}的前n项和sn=3+2^n,则an等于?
已知数列{an}的前n项和为Sn=-n2-2n,求an
已知数列(an)的前n项和Sn=3+2^n,求an
数列{an}的通项公式an=n(n+1)/2,求数列{an}的前n项和Sn.注意:是求Sn,已知an
已知数列{an}的前n项和sn满足sn=an^2+bn,求证{an}是等差数列
已知数列an的前n项和sn满足sn=n的平方+2n-1求an
已知数列AN的前N项和SN,SN=2N^2+3n+2,求an
已知数列an的前n项和为Sn,且An=3^n+2n,则Sn等于
1.已知数列an的前n项和为Sn,且Sn=2^n,求通项an;2.已知数列an的前n项和为Sn,且Sn=n^2+3n,求通项an;
已知数列{an}中,an>0,Sn为{an}的前n项和,且an+1/an=2Sn,求an.
已知数列{an}中,an>0,Sn为{an}的前n项和,且an+1/an=2Sn,求an.
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列(an)的前n项和为Sn,满足an+Sn=2n,证明数列(an-2)为等比数列并求出an
已知数列{an}的前n项和为Sn=n^2-3n,求证:数列{an}是等差数列