已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)≤3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:21:06
已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)≤3
已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)≤3
已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)≤3
f(x)+f(x-2)≤3得f[x*(x-2)]≤3=f(8),
这是因为f(2)=1,所以f(2*1)=f(2)+f(1),从而f(1)=0,f(2*2)=f(2)+f(2)=2,f(2*4)=f(2)+f(4)=1+2=3
故有x(x-2)0,x-3>0
解得x>=4
f(2)=1 3=1*3=f(2)+F(2)+F(2)=F(4)+F(2)=f(8)
因为单调增
所以x(x-2)<=8
(x-4)(x+2)<=0
因为(0,+∞) x>=4
已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)≤3
已知f(x)的定义域为(0,+∞).且在其上为增函数.满足f(xy)=f(x)+f(y),f(2)=1,试解不等式f(x)+f(x-2)<3
已知函数f(x)的定义域为(0,正无穷),当x>1时,f(x)>0,且f(xy)=f(x)+f(y).证明f(x)在定义域上为增函数.
已知函数f(x)的定义域为(0,正无穷),当x>1时,f(x)>0,且f(xy)=f(x)+f(y).证明f(x)在定义域上为增函数
已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y )已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y ),且f(2)=1,则f(根号2)=
已知函数f(x)的定义域为(0,正无穷大)且f(x)在(0,正无穷大)上为增函数,f(xy)=f(x)+f(y),若f(3)=1已知函数f(x)的定义域为(0,+∞)且f(x)在(0,+∞)上为增函数,f(xy)=f(x)+f(y),若f(3)=1,且f(a)>f(a-1
已知函数fx的定义域为(0,+∞),且fx在定义域上为增函数,f(xy)=fx+fy求证f(x/y)=fx-fy
已知函数f x 的定义域为(0,+∞),且fx在定义域上是单调增函数,f(xy)=f(x)+f(y).(1)求证f(x/y)=f(x)-(y)(2)已知f(3)=1,且f(a)>f(a-1)+2,求实数a的取值范围.
急已知函数f(x)在定义域R上是偶函数,且在[0,+无穷)上为增函数,若f(a-2)-f(1-2a)
已知f(x)定义域为(0,正无穷),且在其上为增函数,满足f(x乘y)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)
已知函数f(x)在定义域(0,+∞)上为增函数,且fx0),试判断F(x)=1/f(x)在(0,+∞)上的单调性并证明
已知定义域为R的偶函数f(x)在(-∞,0]上为增函数且f(1/2)=0,则不等式f(4ⁿ)
已知偶函数f(X)的定义域为[-1,1],且在[0,1]上为增函数,若f(a-2)-f(4-a^)
已知函数f(x)是奇函数,其定义域为(-1,1)且在[0,1]上为增函数若f(a-2)+f(3-a)
已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2
已知f(x)的定义域(0,+无穷),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1,试解不等式f(x)+f(x-2)小于3已知定义域为{x属于R|x不等于0}的函数f(x)满足:对于f(x)定义域的任何实数x,都有f(-x)+f(x)=0;当x
已知f(x)在定义域(0,正无穷)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)
已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.求f(9),f(27)的值已知函数f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1.(1)求f(9),f(27)的值.(2)解不等式f(x)+f(x-8)<2