英语翻译We have shown that with the necessary modificatons the Adomian’s method can be used to obtain the classical results on the special functions.Rather than prescribe a unique form we show that the concrete problem decides how to form
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:37:45
英语翻译We have shown that with the necessary modificatons the Adomian’s method can be used to obtain the classical results on the special functions.Rather than prescribe a unique form we show that the concrete problem decides how to form
英语翻译
We have shown that with the necessary modificatons the Adomian’s method
can be used to obtain the classical results on the special functions.Rather
than prescribe a unique form we show that the concrete problem decides
how to formulate the method.The clue of this one consists in transforming
a linear differential equation into a pseudo Volterra integral equation whose
solution is obtained by the Picard process of succesive approximation.
The method can be obtained by a light modification of the known form of
the solution for a linear second order differential equation,the sole difference
being the extension of what is ussualy called the non-homogeneous term in
the sense that it can include important pieces from the homogeneous part.
Our results can also be seen as a good illustration for the effectivness of
the Picard method of succesive approximation.
英语翻译We have shown that with the necessary modificatons the Adomian’s method can be used to obtain the classical results on the special functions.Rather than prescribe a unique form we show that the concrete problem decides how to form
我们已经表明,必要的modificatons Adomian的的方法
可用于获取经典结果的特殊功能.而
比开了一个独特的形式,我们表明,具体问题决定
如何制定方法.这一线索在于转变
线性微分方程变成一个伪沃尔泰拉的积分方程
解决方案是通过succesive过程的Picard近似.
该方法可以获得一个光的修改
我们已经表明,必要的modificatons Adomian的的方法
可用于获取经典结果的特殊功能。而
比开了一个独特的形式,我们表明,具体问题决定
如何制定方法。这一线索在于转变
线性微分方程变成一个伪沃尔泰拉的积分方程
解决方案是通过succesive过程的Picard近似。
该方法可以获得一个光修改已知的形式的
解决方案的一个线性二阶微...
全部展开
我们已经表明,必要的modificatons Adomian的的方法
可用于获取经典结果的特殊功能。而
比开了一个独特的形式,我们表明,具体问题决定
如何制定方法。这一线索在于转变
线性微分方程变成一个伪沃尔泰拉的积分方程
解决方案是通过succesive过程的Picard近似。
该方法可以获得一个光修改已知的形式的
解决方案的一个线性二阶微分方程,唯一的区别
被扩展的ussualy称为非齐次术语
说它可以包括重要部分的同构部分。
我们的结果也可以被看作是一个好插画的有效性
皮卡德的succesive近似的方法。
收起