题目大致是这样的:在RT△ACD中,CD=1,AC=2,延长CA到E,使AE=CD,延长CD到F使DF=AE,连接EF,AO,ED.求证:∠FOD=45°不好意思,是使DF=CE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:14:43
题目大致是这样的:在RT△ACD中,CD=1,AC=2,延长CA到E,使AE=CD,延长CD到F使DF=AE,连接EF,AO,ED.求证:∠FOD=45°不好意思,是使DF=CE
题目大致是这样的:在RT△ACD中,CD=1,AC=2,延长CA到E,使AE=CD,延长CD到F使DF=AE,连接EF,AO,ED.求证:∠FOD=45°
不好意思,是使DF=CE
题目大致是这样的:在RT△ACD中,CD=1,AC=2,延长CA到E,使AE=CD,延长CD到F使DF=AE,连接EF,AO,ED.求证:∠FOD=45°不好意思,是使DF=CE
这一题很简单的,我们今年的暑假作业上就有这道题~其实根本不要线段的值,只要线段之间的关系就好了.过程可能有点长.
证明:过点D向下作DM⊥FC,并使DM=AE,连接FM和AM.
(因为我不好把辅助线画出来,可能你会有些看不懂,但自己画好辅助线再琢磨下吧~)
∵DM⊥FC,∠C=90°
∴DM∥CE
又∵AE=DM
∴四边形EAMD是平行四边形
∴ED∥AM,∠DEA=∠AMD
∴∠FOD=∠FAM
在△FDM和△ECD中
∵DF=EC
∠FDM=∠ECD=90°
DM=AE=DC
∴△FDM≌△ECD
∴FM=ED,∠FMD=∠EDC
即FM=AM
∴∠AFM=∠FAM
∵∠CED+∠EDC=90°
∴∠CED+∠EDC=∠FMD+∠DMA=∠FMA=90°
∵∠AFM+∠FAM+∠FMA=180°
∴∠FAM=45°
即∠FOD=45°
为了节省时间我没有写理由,
题目是哪的?
DF=AE=CD=1
CF=CD+DF=2=AC
∠FAC=45°
那么
∠FOD=45°???
这道题错了。
DF=CD=1 AC=2
CF=AC=2
∠ACF=90°
∠CAF=45°
题设里∠FOD=45°
得出 OD与AC平行
而这两条线交于一点E
显然矛盾
所以题是错的。
取近似值吧,根号1 ……根号10==1 1.414 1.732 2 2.236 2.449 2.646 2.828 3 3.162 =22.467 根号1 ……根号9==1 1.414 1.732 2 2
你的题目是不是写错了点东西啊?你检查一下!