设数列{bn}的前n项和为sn,且bn=1-2sn;数列{an}为等差数列,且a5=14,a7=20.求数列{bn}的通项公式 若cn=an×bn,n=1.2.3.Tn为数列{cn}的前n项和,求证:Tn<7/4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 01:26:01

设数列{bn}的前n项和为sn,且bn=1-2sn;数列{an}为等差数列,且a5=14,a7=20.求数列{bn}的通项公式 若cn=an×bn,n=1.2.3.Tn为数列{cn}的前n项和,求证:Tn<7/4
设数列{bn}的前n项和为sn,且bn=1-2sn;数列{an}为等差数列,且a5=14,a7=20.求数列{bn}的通项公式 若cn=an×bn,n=1.2.3.Tn为数列{cn}的前n项和,求证:Tn<7/4

设数列{bn}的前n项和为sn,且bn=1-2sn;数列{an}为等差数列,且a5=14,a7=20.求数列{bn}的通项公式 若cn=an×bn,n=1.2.3.Tn为数列{cn}的前n项和,求证:Tn<7/4
Sn=(1-bn)/2
Sn+1=(1-bn+1)/2
两式相减得到 bn+1=(bn-bn+1)/2 所以 3bn+1=bn ;bn为等比数列公比为1/3
b1=1-2S1=1-2b1 所以b1=1/3 所以bn=(1/3)^n;
d=(a7-a5)/2=3 所以an=a5+(n-5)×3=3n-1;
cn=(3n-1)*(1/3)^n
所以 Tn=1/3*2+(1/3)^2*5+(1/3)^3*8+·······+(1/3)^n*(3n-1)
1/3×Tn= (1/3)^2*2+(1/3)^3*5+·······+(1/3)^n*(3n-4)+(1/3)^(n+1)*(3n-1)
上面的两式相减可得到
2/3×Tn=3*(1/3+(1/3)^2+(1/3)^3+···········+(1/3)^n)-1/3-(1/3)^(n+1)*(3n-1)
Tn=7/4-((1/3)^n-2)/4-((1/3)^n*(3n-1))/2

设数列{Bn}的前n项和为Sn,且Bn=2-2Sn 求数列{Bn}的通项公式 设数列{Bn}的前n项和为Sn,且Bn=2-2Sn(1)求数列{Bn}的通项公式 设数列{bn}的前n项和为Sn,且bn=2-2Sn,求{bn}的通项公式 设数列{bn}的前n项和为Sn,且bn=2-2Sn.求{bn}的通项公式 设数列{Bn}的前n项和为Sn,且Bn=2_2Sn,求数列{Bn}的通项公式 设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通项公式 设正数数列[Bn]的前n项和Sn且Sn=1/2(Bn+1/Bn) 试探求Bn并用数学归纳法证明 设数列{an}的前n项和为bn,数列{bn}的前n项和为cn,且bn+cn=n(1)求证:{1-bn}是等比数列(2)求Sn=c1+c2+.cn 数列{bn}的前n项和为Sn,且sn+1/2bn=1,则{bn}的通项公式为 数列{bn}的前n项和为Sn,且Sn,且Sn=1-1/2bn(n∈N+) 求{bn}的通项公式 已知数列{bn}前n项和为Sn,且2(Sn-n)=n*bn,求证{bn}是等差数列. 【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前...【高考】若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为Sn,且Sn=2-bn,求{bn/an}的前n项和Tn 设数列{bn}的前n项和为sn,且bn=1-2sn;数列{an}为等差数列,且a5=14,a7=20.求数列{bn}的通项公式 若cn=an×bn,n=1.2.3.Tn为数列{cn}的前n项和,求证:Tn<7/4 设数列an的前n项和为sn 且s1=2 sn+1=2sn+2 bn=sn+2 求bn是等比数列求bn是等比数列2 求数列an的通项公式 设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20(1)求数列{bn}的通项公式 正数数列{bn}的前n项和为Sn,且Sn=1/2(bn+n/bn),求Sn的表达式. 设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20 (1)求数列{bn}的通项公式设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20(1)求数列{bn}的通项公式 设数列@n的首项a1=6,其前n项和为Sn,且(图),(1),设Bn等于Sn-2的n次方,证明B设数列@n的首项a1=6,其前n项和为Sn, 且(图),(1),设Bn等于Sn-2的n次方,证明Bn为等比数列,并求数列Bn的通项公式;