已知:如图,在直角三角形ABC中,∠C=90°,AD\\BC,ED=2AB,求证:∠CBE=1/2∠ABE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:34:41

已知:如图,在直角三角形ABC中,∠C=90°,AD\\BC,ED=2AB,求证:∠CBE=1/2∠ABE
已知:如图,在直角三角形ABC中,∠C=90°,AD\\BC,ED=2AB,求证:∠CBE=1/2∠ABE

已知:如图,在直角三角形ABC中,∠C=90°,AD\\BC,ED=2AB,求证:∠CBE=1/2∠ABE
答:作△ADE中DE边上的中线AF交DE于F点,可证AF=DF=EF=AB,所以△ABF和△FAD是等腰△,∠ABF=∠AFB,∠FAD=∠FDA=∠EBC,又∠AFB=∠FAD+∠FDA=2∠EBC=∠ABF=∠ABE.故证.