设y=f(e的x次方),且函数f(x)具有二阶导数,证明y''-y'=e的2x次方乘以f‘’(e的x次方)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:49:21

设y=f(e的x次方),且函数f(x)具有二阶导数,证明y''-y'=e的2x次方乘以f‘’(e的x次方)
设y=f(e的x次方),且函数f(x)具有二阶导数,证明y''-y'=e的2x次方乘以f‘’(e的x次方)

设y=f(e的x次方),且函数f(x)具有二阶导数,证明y''-y'=e的2x次方乘以f‘’(e的x次方)
正常求导即可,y '=f '(e^x)*e^x,y "=f "(e^x)*e^x*e^x+f '(e^x)*e^x,所以y "-y '=f "(e^x)*e^2x

设y=f(e的x次方),且函数f(x)具有二阶导数,证明y''-y'=e的2x次方乘以f‘’(e的x次方) 设f(x)=e的y次方,证明:(1),f(x)f(y)=f(x+y) ,(2),f (x)/f(y)=f(x-y) 高数一题,点下思路就可以了设函数f具有二阶导数,且f'≠1,求由方程 (X平方)*(e的y次方)=e的f(x)次方 所确定的y的关于x的函数的一阶及二阶导数.2/x【f‘(y)-1】,2/x平方【f‘(y)-1】- 求这道函数奇偶性题目解法.设函数f(x)的定义域为R,且f(x+y)=f(x)-f(y),那么f(x)为--------函数. 设函数y=f(x),x∈R的导数为f‘(x),且f(x)=f(-x),f‘(x)<f(x),则设函数y=f(x),x∈R的导数为f‘(x),且f(x)=f(-x),f‘(x)<f(x)则下列三个数:ef(2),f(3),e^2f(-1)从小 设a属于R,函数f(x)=e的x次方+a乘e的负x次方的导函数是f`(x),且f`(x)是奇函数,若曲线y=f(x)的一条斜线是3∕2,则切点的横坐标为?f'(x)=3/2e^x-e^(-x)=3/2e^x=2 这步是怎么出来的x=ln2 设a属于R,函数f(x)=e的x次方+a乘e的负x次方的导函数是f`(x),且f`(x)是奇函数,若曲线y=f(x)的一条斜线是3∕2,则切点的横坐标为? (1)函数y=(2+e的x次方)/(1-e的x次方)的值域为(?)(2)如果函数y=f(x)≥0和y=f'(x)≥0在区间D上都是增函数,那么函数f(x)=√f(x)+√f'(x)在区间D上也是增函数.设f(x)=√(x-1/x)+√(x+1/x).①求函数f(x)的定义 1.设函数f(x)对于任意x.y∈R,都有f(x-y)=f(x)-f(y).求证:f(x)是奇函数.2.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x的3次方+x+1,求f(x)的解析式.(要有过程或说明) 设a属于R,函数f(x)=e的x次方+ae的负x次方的导数是f'(x),且是奇函数,若曲线y=f(x)的一条切线的斜率是1.5 已知函数f(x)=e的x次方-kx,x属于r1当k=e,试确定函数f(x)的单调区间2若k>0,且对于任意x属于r,f(绝对值x)>0恒成立,试确定实数k的取值范围3 设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>(e的n+1次方+2)的二 设函数y=f(x)的定义域为R,且f(xy)=f(x)+f(y),f(8)=3,则f(根号2)等于 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 设f(x)=e的x次方,则f的n次方(0)=? 设z=f(x,y)是由方程x+Y+z=(e的x次方)所确定的隐函数,求dz, 已知函数f(x)=e的|x|-1次方-ax(1)若f(x)是偶函数,求实数a的值(2)设a>0,讨论函数y=f(x)的单调性 设函数f(x)在R上的导函数为f'(x),且f(x)>f'(x).若a>b,则()A.e^b*f(b) 设a∈R,函数f(x)=ex(e的x次方)+a*e-x(e的-x次方)的导函数是f(x),且f`(x)是奇函数.若曲线y=f(x)的一条切线的斜率是3/2,则切点的横坐标为? A、ln2 B、-ln2 C、ln2/2 D、-ln2/2