设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明:f(x)≤2x-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:55:53

设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明:f(x)≤2x-2
设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明:f(x)≤2x-2

设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明:f(x)≤2x-2
把P代入f(x)可得a=-1.f'(x)=1-2x+b/x 由f(1)=2,解得b=3
所以f(x)=x=x^2+3lnx 构造函数G(x)=f(x)-2x+2=-x^2-x+3lnx+2
则要证明题设,只需证明G(x)在定义域内恒≤0,即Gmax(x)≤0 x定义域为正实数
G'(x)=-2x-1+3/x 令G'(x)=0,得x=-1.5(舍)或1.显然G(1)为最大值.G(1)=0所以对任意定义域内的x都有即G(x)≤0 即 f(x))≤2x-2

(I)∵f(x)=x+ax2+blnx,
∴f′(x)=1+2ax+
bx,
∵y=f(x)过P(1,0),且在P点处的切线斜率为2,
∴f(1)=1+a=0f′(1)=1+2a+b=2​,
解得a=-1,b=3.
(II)f(x)的定义域为(0,+∞),
由(I)知f(x)=x-x2+3lnx,
设g(x)=f(x)-(...

全部展开

(I)∵f(x)=x+ax2+blnx,
∴f′(x)=1+2ax+
bx,
∵y=f(x)过P(1,0),且在P点处的切线斜率为2,
∴f(1)=1+a=0f′(1)=1+2a+b=2​,
解得a=-1,b=3.
(II)f(x)的定义域为(0,+∞),
由(I)知f(x)=x-x2+3lnx,
设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,
则g′(x)=-1-2x+
3x=-(x-1)(2x+3)x,
当0<x<1时,g(x)′>0;当x>1时,g′(x)<0.
∴g(x)在(0,1)单调增加,在(1,+∞)单调减少.
∴g(x)max=g(1)=0.
∴g(x)=f(x)-(2x-2)≤0,
∴12f(x)≤x-1.

收起

设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,2),且在P点处的设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,2),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明f(x) 设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明f(x) 设函数f(x)=(x-1)^2+blnx,证明ln(1/n +1)>(1/n)^2-(1/n)^3 高二数学间接证明和直接证明设函数f(x)=ax^2+blnx,其中ab≠0,证明:当ab>0时,函数f(x)没有极值点 设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2求fx最值 已知函数f(x)=x^2+ax+blnx,若a=-2-b,讨论函数f(x)的单调性 已知函数f(x)=ax^2+x+blnx在x=1和x=2处取极值,求a,b 设函数f(x)=x^2+blnx,b不等于0讨论f(x)单调性,求单调区间,判断是否有极值点,若有,求出极值. 已知函数f(x)=ax^2+blnx,当x=1时有极值1.求a.b的值,与函数的单调区间 已知函数f(x)=x²+ax+blnx (x>0,实数a,b为常数).若a+b=-2,且b 设函数f(x)=ax平方+2x+blnx在x=1和x=2时取得极值,1:求函数解析式,2:求函数在【 设函数f(x)=ax+2,不等式|f(x)| 1.已知函数f(x)=(ax-1)e^x,a属于R.(2)若函数f(x)在区间(0,1)上是单调增函数,求a的取值范围.2.设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值.(2)证明:f(x)小 设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值,(2)证明:f(x)≤2x-2 设函数f(x)=x+ax2+blnx,曲线y=f(x)过p(1,0),且在p点处的切线斜率为2证明:f(x)小于等于2x-2 设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P处的斜率是2.证明f(x)≤2x-2 设函数f(x)=ax^2+blnx+x,该函数图像过M(1,0)且在点M处的的切线斜率为2 ①求a,b的值,②证明:f(x)小于等于2x-2 设函数f(x)=1/2ax²-x+blnx,已知曲线y=f(x)在点(1,f(1))处的切线平行于x轴 (1)写出a与b的关系表达式(2)当0