向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:33:13
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),
那么向量XA乘向量XB的最小值是
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
-8
加分~
向量op=(2,1)向量OA=(1,7),向量OB=(5,1),且向量OC=t向量OP,(t属于R,其中O是坐标原点)(1)求向量CA*向...向量op=(2,1)向量OA=(1,7),向量OB=(5,1),且向量OC=t向量OP,(t属于R,其中O是坐标原点)(1)求向量CA*向量CB取得
向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),求使向量CA点击向量op=(2,1)向量OA=(1,7),向量OB=(5,1)设C施直线向量OP上一点,(其中O为原点),1)求使向量CA点击向量CB取得最小
点O(0,0) A(1,2) B(4,5) 向量OP=向量OA+向量AB 当t属于R变化时求点P的轨迹方程向量OP=向量OA+t向量AB
向量OP=(2,1),向量OA=(1,7),向量OB=(5,1),设X是直线OP上的一点(O为坐标原点),那么向量XA乘向量XB的最小值是
等轴双曲线与向量已知等轴双曲线C:x^2-y^2=a^2[a>0]上的一定点P(x0,y0)及曲线C上两动点AB满足(向量OA-向量OP)*(向量OB-向量OP)=0 (其中O为原点)1、求证:(向量OA+向量OP)*(向量OB+向量OP)=0 2、
已知向量OA,向量OB不共线,向量OP=a向量OA+b向量OB,且a+b=1,求P位置
证明一道向量问题若向量OP=m向量OA+n向量OB,求证m+n=1 还有若m+n=1,求证向量OP=m向量OA+n向量OB
已知向量AP=2AB都有向量OP=?A.向量2OB-向量OA B.向量2OB+向量OA C.向量2OA-向量OB D.向量2OA-向量OB
一直线上三点a、b、p满足ap向量=λpb向量(λ≠-1),o是平面上任一点则A.OP向量=(OA向量+λOB向量)/(1+λ)B.OP向量=(OA向量+λOB向量)/(1-λ)C.OP向量=(OA向量-λOB向量)/(1+λ)D.OP向量=(OA向量
已知O是三角形ABC的外心,且向量OP= 向量OA+ 向量OB+ 向量OC,向量OQ= 1/3(向量OA+ 向量OB+ 向量OC),则点P、Q分别是三角形ABC的 心和 心.
已知向量OA向量ob,为两个不共线向量,且向量ap=t向量ab,其中t是实数求证向量op=(1-t)向量oa+t向量ob
已知O是三角形ABC的外心,且向量OP=向量OA+向量OB+向量OC,向量OQ=1/3(向量OA+向量OB+向量OC),则点P,Q分别是三角形ABC的什么?
如何证明:向量OP、OA、OB、OC满足OP=xOA+yOB+(1-x-y)OC,
已知向量OA的模=3 向量OB的模=4 OA⊥OB 又向量OP=(1-t)向量OA+t向量OB 且OP⊥AB 则实数t的值为?
已知向量OP=(2,1),OA=(1,7),OB=(5,1),设x是直线OP上的一点,(O为坐标原点),那么向量XA*XB的最小值是?thanks向量积,不过答案是-8
PQ过△OAB的重心,设向量OA=向量a,向量OB=向量b,若向量OP=向量m向量a,向量OQ=n向量b.求证:(1/m)+(1/n)=3
向量bp=1/4向量ba,若向量op=x向量oa+y向量ob,则x-y=
已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),求向量OA与向量OB已知3向量OA+2向量OB=(13,1),向量OA-向量OB=(1,-3),1、求向量OA与向量OB2、以向量OA与向量OB为邻边作平行四边形OABC,求向量OC