设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:46:30
设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)
设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)
设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)
设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数
设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1)
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
设A为n阶矩阵,且有n个正交的特征向量,证明:A为实对称矩阵
设n阶矩阵,r(A)=n-1,证明:r(A*)=1 (A*)表示A的伴随矩阵.
设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)
矩阵乘积的秩设A,B为n阶矩阵,证明:r(AB)+n≥r(A)+r(B)备用符号≥≤><≠
设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,
设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ线性代数
设A是n阶的矩阵,证明:n
设n阶矩阵A满足A平方=A,E为n阶单位矩阵,证明r(A)+r(A-E)=n.
设n阶矩阵A满足A^2=A,E为n阶单位矩阵,证明r(A)+r(A-E)=n
(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵
设m×n实矩阵A的秩为n,证明:矩阵AtA为正定矩阵.
设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1
设A,B均为n阶矩阵,r(A)