线性代数:矩阵A与B相似的充分条件我觉得只需验证 1秩相等 2特征值一致即可.但是没有理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:40:37

线性代数:矩阵A与B相似的充分条件我觉得只需验证 1秩相等 2特征值一致即可.但是没有理由.
线性代数:矩阵A与B相似的充分条件
我觉得只需验证 1秩相等 2特征值一致即可.但是没有理由.

线性代数:矩阵A与B相似的充分条件我觉得只需验证 1秩相等 2特征值一致即可.但是没有理由.
你能有这样的结论是因为工科数学研究不够深入,一般只讨论实对称矩阵或对称矩阵.
我来举个例子
110
010
001

110
011
001
两个3阶矩阵的特征值和秩都相同,却不相似(这个你不用验证,这是jordan标准型~不一样一定不相似)
这样给你讲:你记得矩阵有相抵标准型吧?就是任何矩阵都可以经过初等变换为对角线上是1和0的矩阵,可以看他的秩用~那叫相抵标准型
同样,矩阵也有相似标准型:jordon标准型,只有标准型一样,矩阵才相似.对应的就是上边那位说的不变因子组初等因子组相同,或是拉姆达矩阵相抵.想必你学工科都没听过.
你的结论可以在对称矩阵时成立.
证明对称阵A,B,存在正交阵U,U逆AU=diag对角线上为特征值.如果两个矩阵特征值全相同 就有U1逆AU1=U2逆BU2,A,B相似

秩相等 特征值一致 是矩阵相似的必要条件而不是充分条件
如果两个矩阵特征值相同,并且可对角化(比如有n个不同的特征值), 则它们相似.
另外, 如果你学过λ-矩阵的内容, 那么两个矩阵相似的充分必要条件是它们的初等因子(或不变因子)相同.

1秩相等 2特征值一致,并不能保证特征子空间的几何重数一致。

不一定。
比如1,2,2是三阶矩阵A的三个特征值,且R(A-2E)=2,此时R(A)=R(Λ)=3,且A和Λ的特征值均为1,2,2;但是由于λ=2是A的二重特征值,而R(A-2E)=2≠n-2=1,所以A不能相似对角化,即不存在可逆矩阵P,使P^(-1)AP=Λ,所以A和Λ不相似。
两个矩阵AB相似的充要条件为:存在可逆矩阵P,使P-1AP=B...

全部展开

不一定。
比如1,2,2是三阶矩阵A的三个特征值,且R(A-2E)=2,此时R(A)=R(Λ)=3,且A和Λ的特征值均为1,2,2;但是由于λ=2是A的二重特征值,而R(A-2E)=2≠n-2=1,所以A不能相似对角化,即不存在可逆矩阵P,使P^(-1)AP=Λ,所以A和Λ不相似。
两个矩阵AB相似的充要条件为:存在可逆矩阵P,使P-1AP=B

收起

线性代数:矩阵A与B相似的充分条件我觉得只需验证 1秩相等 2特征值一致即可.但是没有理由. 矩阵A与B相似的充分必要条件是什么? 线性代数 特征值 特征向量 矩阵可相似对角化【A有n个线性无关的特征向量是A与对角矩阵相似的充分必要条件.A有n个不同的特征值是A与对角矩阵相似的充分条件.】那在我看来“A有n个线性无 线性代数 相似矩阵证明:如果A与B相似,则A‘与B’相似 线性代数大学试卷两题1.设A(m*n)为实矩阵,则线性方程组Ax=0只有零解是矩阵(A^T *A) 为正定矩阵的( 充分条件 )2.设 A(m*n)为实矩阵,秩r(A)=n ,则 ( )(A) 相似于 ; (B)A*(A^T) 合同于E ;(C) 相似 一道线性代数题目设A是mxn矩阵,非齐次线性方程组Ax=b有解的充分条件是? 线性代数 相似矩阵的充分条件两个矩阵1 特征值相等 2 秩相等 3 正对角线和相等 4 行列式相等 这四个条件是矩阵相似的充分条件还是必要条件啊 那位大哥指点下 相似矩阵充分条件(见一道选择题)如果____________ ,则n阶矩阵A与矩阵B相似.A./A/ =/B/ B.r(A)=r(B)C.A与B有相同的特征值,且n个特征值各不相同 D.A与B有相同的特征多项式 问一道关于相似矩阵的证明题(线性代数)设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵.证明:对任意常数t,tE-A与tE-B相似. 刘老师,您好,想向您求助线性代数一个概念性的问题?请问矩阵A相似于矩阵B 与 矩阵B相似于矩阵A 这两种表述有何区别?如果是矩阵A相似于矩阵B的话,就有P逆AP=B,如果是矩阵B相似于矩阵A的话, 线性代数:设n阶矩阵A与B相似且可逆,则|A乘B逆|=?怎么算的? 线性代数:A与B相似,就是P-1AP=B ,为什么这样作用一下相等就是相似了?这个P矩阵的逆与P矩阵起着什么样的作用,通过作用在A上,使其能变成一个与A相似的B矩阵?这个变化的本质是什么?我能判断 一道线性代数问题:若矩阵A与B相似,则两矩阵与同一对角阵相似为什么不对.我觉得B=P(-1)*A*P,A=Q*对角阵*Q(-1)代入就是B=P(-1)Q*对角阵*Q(-1)P两边都可逆啊,为什么不对 矩阵相似的充分条件已知矩阵A=1 2 0 3那么下列与A相似的矩阵有.以上是原题,答案说,二阶矩阵A有两个不同的特征值1和3,因此A~B=1 n阶矩阵A和对角矩阵相似的充分条件是:A有n个不同的特征值和A是实对称矩阵.我想问:一般题目是证明n阶矩阵A和B相似,这样,是不是最开始先证明矩阵B可对角化,然后再用上面的充分条件证明相 矩阵A与B相似, 线性代数矩阵相似问题矩阵A为1 1 -21 -2 1-2 1 1矩阵B为1 1 11 3 11 1 1矩阵C为0 010 0 01 0 0问B C判断其与A是否等价 合同 相似我就是要一个别人的判断 我做的答案和试卷不一样 线性代数:关于用相似对角化反求A的问题A是实对称矩阵,已经求出了由特征值构成的与A相似的对角矩阵B,由特征向量构成的但没有单位正交话的矩阵P,已经单位正交化的矩阵Q,我的问题是:用