设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:31:19

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?
设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明?
2 是A的特征值
则 2^2= 4 是 A^2 的特征值
所以 4/3 是 (1/3)A^2 的特征值
所以 3/4 是 (1/3A^2)^-1的一个特征值

设x=2是可逆矩阵A的一个特征值,则矩阵(1/3A^2)^-1的一个特征值是多少?请具体证明? 设a=2是可逆矩阵A的一个特征值,则矩阵(1/3A)ˉ¹必有一个特征值等于多少 设a=2是可逆矩阵A的一个特征值,则矩阵(1/3A)ˉ¹必有一个特征值等于多少 设2是可逆矩阵A的一个特征值,则3A^2+E的一个特征值为 .设 =2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于( )9.设 =2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于( )A.1/4 B.1/2 C.2 D.4 设a是可逆矩阵A的一个特征值,则下列说法不正确的是(A)(aE-A)X=0的解都是A的属于a的特征向量(B)A的逆矩阵的一个特征值为-1/a(C)A*有一个特征值为|A|/a(D)A^2有一个特征值为a^2 λ=2是可逆矩阵A的一个特征值,则A-2A^-1的特征值为 设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是 设2是矩阵A的一个特征值,且A可逆,则E+(A^-1)+A^3有一个特征值是如题 设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?帮我写出解答过程和用到什么性质和定理好吗? A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值? 设2为矩阵A的一个特征值,则矩阵3A必有一个特征值? 求一题关于特征值的数学证明题设n阶可逆矩阵A的一个特征值为λ,A*是A的伴随矩阵,设|A|=d,证明:d/λ是A*的一个特征值. 设m是可逆矩阵A的一个特征值,证明:det(A)/m是A的伴随矩阵A*的一个特征值 设m是可逆矩阵A的一个特征值,证明:det(A)/m是A的伴随矩阵A*的一个特征值 设R是可逆矩阵A的一个特征值,证明:det(A)/ R是A的伴随矩阵A*的一个特征值. 设三阶矩阵A的特征值为-2,-1,1则下列矩阵中可逆矩阵是?设三阶矩阵A的特征值为-2,-1,1则下列矩阵中可逆矩阵是 多少? n阶可逆矩阵A的一个特征值是5,则矩阵[(1/2)A2]-1次方 必有一个特征值是什么