线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯一解 (B) 若AX=b有无穷多解 则AX=0有非零解 这

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:32:25

线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯一解 (B) 若AX=b有无穷多解 则AX=0有非零解 这
线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯
线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯一解 (B) 若AX=b有无穷多解 则AX=0有非零解 这两句话哪句对?给错误的那句来个反例.

线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯一解 (B) 若AX=b有无穷多解 则AX=0有非零解 这
(A) 若AX=0仅有零解 则AX=b必有唯一解
错,AX=b可能无解.
随便举:
x+y=0
x+y=0
x-y=0
有唯一解
x+y=1
x+y=0
x-y=2
显然无解了.
(B) 若AX=b有无穷多解 则AX=0有非零解
肯定对.

线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯线性代数问题:现有一个m×n的系数矩阵A 则 (A) 若AX=0仅有零解 则AX=b必有唯一解 (B) 若AX=b有无穷多解 则AX=0有非零解 这 线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC 考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m 关于线性代数矩阵的问题,为什么可以说m小于n? 线性代数中有关线性方程组的一个小问题A是m*n矩阵,线性方程组Ax=b有解的充分必要条件是系数矩阵A的秩等于增广矩阵的秩,为什么说“亦等同于A的列向量组a1,a2,...an与向量组a1,a2,...an,b是等价 线性代数问题:已知矩阵A为m*n,如何证明r(AB)=r(BA)=r(A)?其中B矩阵位A的转置矩阵. 线性代数,求一个矩阵的n次方矩阵A=3 91 3 求A^n 线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.我当然知道那是A的秩是n.但是对于一个3*2阶的矩阵来说,R(A)=n=2那不就是代表这个矩阵的行列式为0了? 线性代数矩阵的问题如果A是m*n阶矩阵,那么r(A)=n是什么意思.额.我当然知道那是A的秩是n.但是对于一个3*2阶的矩阵来说,R(A)=n=2那不就是代表这个矩阵的行列式为0了? 考研数学线性代数问题,若矩阵列向量线性无关,可以推导出行向量也线性无关吗?一直在考虑这个问题:若一个m×n矩阵A,m>n,且R(A)=na.由定理可知,由于R(A)=n<m 矩阵的m个行向量线性相关b.再由定 线性代数矩阵n次方问题 请教一个线性代数矩阵的证明题m*n矩阵A与B等价的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.这个推论怎么证明,书上没有. 关于线性代数的问题: 若一个矩阵A有n个线性无关的特征向量,跟矩阵的秩有什么关系呀? 求助一个线性代数特征值的问题设n阶矩阵A的任何一行中n个元素的和都是a,证明:a是A的特征值 线性代数矩阵与行列式的应用A为m×n维矩阵,B为n×m维矩阵,当m>n时,试证:|AB|=0. 线性代数问题,一个n阶矩阵,秩小于n,是不是对应行列式就等于零?如果是m乘n矩阵,秩小于n,是不是也一样? 请解一线性代数题:设A是n*m矩阵,B是m*n矩阵,其中n 线性代数矩阵问题,求证明?A为m*n矩阵,B为n*s矩阵,且B=[b1,b2,.bs]请问:为什么AB=[Ab1,Ab2,.Abs]?