设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:35:17
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
向量OP=向量OA+t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
向量OP-OA=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP=t[向量AB/( |向量AB|*cosB)+向量AC/( |向量AC|*cosC)]
∴向量AP*向量BC=t[向量BC·向量AB/( |向量AB|*cosB)+向量BC·向量AC/( |向量AC|*cosC)]
=t[|向量BC||向量AB|(-cosB)/( |向量AB|*cosB)+|向量BC||向量AC|cosC/( |向量AC|*cosC)]
=t[|向量BC|(-1)+|向量BC|]=0
∴向量AP⊥向量BC
∴动点P的轨迹一定过三角形ABC的垂心
O是平面上一定点,A,B,C是平面上不共线三点,求p的见相册同名图片
O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC ),O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足向量OP = 向量OA+λ(向量AB +向量AC λ
O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|),λ∈[0,+∞),为啥是外心啊
已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/sinc+AC/sinb),则P的轨迹一定通过△ABC的
向量与三角形的五心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|+AC/|AC|).λ∈[0,+∞)问 P点一定过三角形的什么心.O是平面上一定点,A,B,C是平面上不共线的三个点,
已知O是平面上的一定点,A,B,C是平面上不共线的三个点已知O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足OP=(OB+OC)/2+λ(AB/|AB|cosB+AC/|AC|cosC).λ∈(0,+∞),则动点P的轨迹一定通
1.o是平面上一定点,A B C 是平面上不共线的三个点 动点P满足 向量OP=向量OA+λ(向量AB+向量AC) λ≥0 则P一定通过三角形ABC的 重心 对么 2.o是平面上一定点,A B C 是平面上不共线的三个点 λ≥0
设O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足向量OP=向量OA+t(向量AB/ 向量AB的模*cosB+向量AC/ 向量AC的模*cosC),t属于(0,+无穷),则动点P的轨迹一定过三角形ABC的什么心?
平面向量的基本定理及坐标表示一、向量e1、e2是平面内一组基底,若ke1+he2恒成立,则k= h= O是平面上一定点,A、B、C是平面上不共线的三点,动点满足向量OP=向量OA+K(向量AB/向量AB的模+向量AC/向
已知点O是平面上一定点,A、B、C是平面上不共线的三点若懂点P满足OPA+入(AB/|AB|+AC/|AC|),入∈[0,+无穷大),则点P的轨迹一定过三角形ABC的A、内心 B外心 C垂心 D重心.其中“入”是个符号,求解体图
向量,与三角形结合的问题设0是平面上一定点,A,B,C是平面上不共线的三点,动点P满足向量0P=向量0A+λ(向量AB/|向量AB| 向量AC/|向量AC|)(λ≧0),则点P的轨迹一定通过三角形A B C 的什么心?
O是平面上一定点,A、B、C是平面上不贡献的三个点,动点P满足向量OP=向量OA+λ*(向量AB/ | 向量AC |+向量AC/ | 向量AC |),λ>0,则点P的轨迹一定通过三角形ABC的()a.外心b.内心c.重心d.垂心3楼
已知O是平面上一定点,A,B,C,是平面上不共线的三个点,动点P满足向量OP=向量OA+λ(向量AB/ABsinB+向量AC/ACsinC),其中λ属于(0,+无穷),则P点轨迹一定通过△ABC的( ) A.重心 B.垂心 C.内心 D.外心
数学难题 轨迹方程O 是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足 向量OP=向量OA+a(向量AB+向量AC),a∈[0,+∞) 则P的轨迹是 另外,(log pai/2的x )+sinx=2的实数根的个数为记f(m
已知O,A,B是平面上不共线的三点,若点C满足
O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|cosB+AC/|AC|cosC).λ∈[0,+∞)|AB|cosB和|AC|cosC 是做分母的问 P点一定过三角形的什么心.垂心 我想知道为什么是垂心请问 左
三角形四心O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB+AC),λ∈[0,+∞),则P的轨迹一定通过△ABC的( )
已知O是平面上一定点,A、B、C是平面上不共线的三个点,动点p满足向量OP=OA+λ(AB+AC)则P的轨迹一定经过△ABC的什么心?λ∈【0,正无穷】 为啥一定过重心?入 取0.0001时他还过重心?