谁能给我10道初二的数奥题?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:00:47

谁能给我10道初二的数奥题?
谁能给我10道初二的数奥题?

谁能给我10道初二的数奥题?
第十七届“希望杯’’全国数学邀请赛 初二 第2试 2006年4月16日 上午8:30至lO:30 得分___________ 一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内. 1.下列四组根式中,是同类二次根式的一组是( ) 2.要使代数式 有意义,那么实数x的取值范围是( ) 3.以线段a=13,b=13,c=10,d=6为边作梯形,其中a,c为梯形的两底,这样的梯形( ) (A)能作一个. (B)能作两个. (C)能作无数个. (D)一个也不能作. (英汉词典:Fig.figure的缩写,图;quadrilateral四边形;diagonal对角线;value数值;variable变量;to depend on取决于;position位置) (A)是完全平方数,还是奇数. (B)是完全平方数,还是偶数. (C)不是完全平方数,但是奇数. (D)不是完全平方数,但是偶数. 6.将任意一张凸四边形的纸片对折,使它的两个不相邻的顶点重合,然后剪去纸片的不重合部分,展开纸片,再一次对折,使另外的两个顶点重合,再剪去不重合的部分后展开,此时纸片的形状是( ) (A)正方形. (B)长方形. (C)菱形. (D)等腰梯形. 7.若a,b,c都是大于l的自然数,且 =252b,则n的最小值是( ) (A)42. (B)24. (C)21 (D)15 (英汉词典:two-placed number两位数;number数,个数;to satisfy满足;complete square完全平方(数);total总的,总数) 9.下表是某电台本星期的流行歌曲排行榜,其中歌曲J是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是( ) (A)D,E,H. (B)C,F,I. (C)C,E,I. (D)C,F,H. 10.设n(n≥2)个正整数 ,…, ,任意改变它们的顺序后,记作 ,…, ,若P=( - )( - )( )…( 一 ),则( ) (A)P一定是奇数. (B)P一定是偶数. (C)当n是奇数时,P是偶数. (D)当”是偶数时,P是奇数. 二、填空题(每小题4分,共40分.) 11.消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是______米. 15.从凸n边形的一个顶点引出的所有对角线把这个凸n边形分成了m个小三角形,若m等于这个凸n边形对角线条数的 ,那么此n边形的内角和为_____. 16.某种球形病毒,直径是0.01纳米,每一个病毒每过一分钟就能繁殖出9个与自己同样的病毒,假如这种病毒在人体中聚集到一定数量,按这样的数量排列成一串,长度达到1分米时,人就会感到不适,那么人从感染第一个病毒后,经过_______分钟,就会感到不适.(1米=10 纳米) 19.如图2,等腰△ABC中,AB=AC,P点在BC边上的高AD上,且, BP的延长线交AC于E,若 =10,则 =______, =_______. 20.一个圆周上依次放有1,2,3,…,20共20个号码牌,随意选定一个号码牌(如8),从它开始,先把它拿掉,然后每隔一个拿掉一个(如依次拿掉8,10,12,…),并一直循环下去,直到剩余两个号码牌时停止,则最后剩余的两个号码的差的绝对值是______或_______. 三、解答题(本大题共3小题,共40分.) 要求:写出推算过程. 21.(本小题满分10分) 如图3,正方形ABCD的边长为a,点E、F、G、H分别在正方形的四条边上,已知EF‖GH.EF=GH. (1)若AE=AH= ,求四边形EFGH的周长和面积; (2)求四边形EFGH的周长的最小值. 22.(本小题满分15分) 已知A港在B港的上游,小船于凌晨3:00从A港出发开往B港,到达后立即返回,来回穿梭于A、B港之间,若小船在静水中的速度为16千米/小时,水流速度为4千米/小时,在当晚23:OO时,有人看见小船在距离A港80千米处行驶.求A、B两个港口之间的距离. 23.(本小题满分15分) 在2,3两个数之间,第一次写上 ,第二次在2,5之间和5,3之间分别写上 和 ,如下所示: 第k次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的 . (1)请写出第3次操作后所得到的9个数,并求出它们的和; (2)经过k次操作后所有数的和记为 ,第k+1次操作后所有数的和记为 ,写出 与 之间的关系式; (3)求 的值. 第十七届“希望杯”全国数学邀请赛 参考答案及评分标准 初中二年级 第2试 一.选择题(每小题4分) 二.填空题(每小题4分) 三、解答题 21.(1)如图1,连结HF.由题知四边形EFGH是平行四 边形,所以 又 所以 所以(3分) 所以△AHE和△DHG都是等腰直角三角形,故∠EHG= ,四边形EFGH是矩形. 易求得 所以四边形EFGH的周长 为2 ,面积为 .(5分) (2)如图2,作点H关于AB边的对称点 ,连结 ,交AB于 ,连结 H.显然,点E选在 处时.EH+EF的值最小,最小值等于 . (7分) 仿(1)可知当AE≠AH时,亦有 (8分) 所以 因此,四边形EFGH周长的最小值为2 . (10分) 22.设A、B两个港口之间的距离为L,显然 (1分) (1)若小船在23:00时正顺流而下,则小船由A港到达下游80千米处需用 即19:00时小船在A港,那么在3:00到19:00的时间段内,小船顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了t小时,则逆流行驶用了(16一t)小时,所以 解得t=6 (5分) 即顺流行驶了 由于 所以A、B两个港口之间的距离是120千米. (7分) (2)若小船在23:00时正逆流而上,则小船到达A港需再用 即小船在 内顺流行驶的路程与逆流行驶的路程相同,而所用的时间与速度成反比,设小船顺流行驶用了 小时,则逆流行驶用了 小时,所以 解得(12分) 即顺流行驶了 由于 所以A、B两个港口之间的距离可能是100千米或200千米. (14分) 综上所述,A、B两港口之间的距离可能是100千米或120千米或200千米. (15分) 23.(1)第3次操作后所得到的9个数为 它们的和为 (4分) (2)由题设知 =5,则 (10分) (3)因为 所以 (15分)