数学最小公倍数.最小公倍数.最大公倍数.最小公约数.最大公约数.算法各是怎么样的?最好例几个啊 我脑子笨哪!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:53:22
数学最小公倍数.最小公倍数.最大公倍数.最小公约数.最大公约数.算法各是怎么样的?最好例几个啊 我脑子笨哪!
数学最小公倍数.
最小公倍数.最大公倍数.最小公约数.最大公约数.算法各是怎么样的?最好例几个啊 我脑子笨哪!
数学最小公倍数.最小公倍数.最大公倍数.最小公约数.最大公约数.算法各是怎么样的?最好例几个啊 我脑子笨哪!
最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.
最小公倍数的表示:
数学上常用方括号表示.如[12,18,20]即12、18和20的最小公倍数.
最小公倍数的求法:
求几个自然数的最小公倍数,有两种方法:
(1)分解质因数法.先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数.
例如,求[12,18,20],因为12=2^2×3,18=2×3^2,20=2^2×5,其中三个数的公有的质因数为2,两个数的公有质因数为2与3,每个数独有的质因数为5与3,所以,[12,18,20]=2^2×3^2×5=180.(可用短除法计算)
(2)公式法.由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积.即(a,b)×[a,b]=a×b.所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数.
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180.求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止.最后所得的那个最小公倍数,就是所求的几个数的最小公倍数.
最大公约数
指某几个整数共有因子中最大的一个.
例如,12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.
两个整数的最大公约数主要有两种寻找方法:
* 两数各分解质因子,然后取出同样有的项乘起来
* 辗转相除法(扩展版)
和最小公倍数(lcm)的关系:gcd(a,b)×lcm(a,b) = ab
两个整数的最大公因子可用于计算两数的最小公倍数,或分数化简成最简分数.
两个整数的最大公因子和最小公倍数中存在分配律:
* gcd(a,lcm(b,c)) = lcm(gcd(a,b),gcd(a,c))
* lcm(a,gcd(b,c)) = gcd(lcm(a,b),lcm(a,c))
在坐标里,将点(0,0)和(a,b)连起来,通过整数坐标的点的数目(除了(0,0)一点之外)就是gcd(a,b).
最小公倍数,对于两个整数来说,指该两数共有倍数中最小的一个。
例子:例:求48和42的最小公倍数
48与42的最小公约数为2
48/2=24;42/2=21;24与21的最小公约数为3
24/3=8;21/3=7;8和7互为质数
2*3*8*7=336
最大公约数,某几个整数共有约数中的最大一个
例子:例: 在2、4、...
全部展开
最小公倍数,对于两个整数来说,指该两数共有倍数中最小的一个。
例子:例:求48和42的最小公倍数
48与42的最小公约数为2
48/2=24;42/2=21;24与21的最小公约数为3
24/3=8;21/3=7;8和7互为质数
2*3*8*7=336
最大公约数,某几个整数共有约数中的最大一个
例子:例: 在2、4、6中,2就是2,4,6的最大公约数。
收起
最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
最小公倍数的表示:
数学上常用方括号表示。如[12,18,20]即12、18和20的最小公倍数。
最小公倍数的求法:
求几个自然数的最小公倍数,有两种方法:
(1)分解质因数法。先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因...
全部展开
最小公倍数
几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
最小公倍数的表示:
数学上常用方括号表示。如[12,18,20]即12、18和20的最小公倍数。
最小公倍数的求法:
求几个自然数的最小公倍数,有两种方法:
(1)分解质因数法。先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数。
例如,求[12,18,20],因为12=2^2×3,18=2×3^2,20=2^2×5,其中三个数的公有的质因数为2,两个数的公有质因数为2与3,每个数独有的质因数为5与3,所以,[12,18,20]=2^2×3^2×5=180。(可用短除法计算)
(2)公式法。由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
最大公约数
指某几个整数共有因子中最大的一个。
例如,12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数。
两个整数的最大公约数主要有两种寻找方法:
* 两数各分解质因子,然后取出同样有的项乘起来
* 辗转相除法(扩展版)
和最小公倍数(lcm)的关系:gcd(a, b)×lcm(a, b) = ab
两个整数的最大公因子可用于计算两数的最小公倍数,或分数化简成最简分数。
两个整数的最大公因子和最小公倍数中存在分配律:
* gcd(a, lcm(b, c)) = lcm(gcd(a, b), gcd(a, c))
* lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c))
在坐标里,将点(0, 0)和(a, b)连起来,通过整数坐标的点的数目(除了(0, 0)一点之外)就是gcd(a, b)。
不懂?用短除法,把两个数分开一定距离写好,找一个你一下就想出的公因数,再做除法,出到互质数为止。
最小公倍数,对于两个整数来说,指该两数共有倍数中最小的一个。
例子:例:求48和42的最小公倍数
48与42的最小公约数为2
48/2=24;42/2=21;24与21的最小公约数为3
24/3=8;21/3=7;8和7互为质数
2*3*8*7=336
最大公约数,某几个整数共有约数中的最大一个
例子:例: 在2、4、6中,2就是2,4,6的最大公约数。
对你有帮助那,把分给我吧,如果不会,看http://zhidao.baidu.com/question/90589823.html?si=3里面有
收起