求因式分解的公式,最好有例题!提公因式,分离常数,完全平方等!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:49:02
求因式分解的公式,最好有例题!提公因式,分离常数,完全平方等!
求因式分解的公式,最好有例题!
提公因式,分离常数,完全平方等!
求因式分解的公式,最好有例题!提公因式,分离常数,完全平方等!
定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做这个多项式的分解因式(分解因式为正式的逆运算)
a的平方-4=(a+2)(a-2)
分解因式:(a+2)(a-2)=a的平方-4
提取公因式:1找多项式每项的公因式
2提公因式
注意问题:1每个括号多不能提
2每个括号的第一项不能提数
3数字的最大约数不一定为1
4(x-y)^2n=(y-x)^2n
(x-y)^2n+1=-(y-x)^2n+1
-a+b=-(a-b)
5分解后答案不能有多重括号,每个括号都要化简
6数字和单个字母要写在最前面
7能变相同的要写相同因式
8求代数的值:先因式分解在求值
分离常数:
在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求常量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出常量的取值范围.这种方法可称为分离常数法.用这种方法可使解答问题简单化.
例如:Y=(ax+b)/(cx+d),(a≠0,c≠0,d≠0),其中a,b,c,d都是常数.
例:y=x/(2x+1).求函数值域
分离常数法,就是把分子中含X的项分离掉,即分子不含X项.
Y=X/(2X+1)=[1/2*(2X+1)-1/2]/(2X+1)
=1/2-1/[2(2X+1)].
即有,-1/[2(2X+1)]≠0,
Y≠1/2.
则,这个函数的值域是:{Y|Y≠1/2}.
十字相乘法
定义:1常数项是正数是,它分解成两个同号的因数,它们与一次项系数符号相同
2常数项是负数是,它分解成两个异号的因数,其中绝对值较大的因数与一次系数符号相同
例:x的平方+7x+10 (归纳一)
1 2 =(x+2)(x+5)
1 5
2+5=7
例:x的平方+3x-4 (归纳二)
1 4 =(x+4)(x-1)
1 -1
4+(-1)=3
Ax的平方+Bx+C=(A1x+C1)(A2x+C2)
(ABC是常数)A1*A2=A
C1*C2=C
A1 C1
A2 C2
--------------
A2C1+A1C2=B
公式法:1平方差公式
2完全平方公式
平方差公式:
例:a的平方-4=(a+2)(a-2)
(a+2)(a-2)=a的平方-4
注意:分解的结果不能为根号,如:x的平方-7y的平方
完全平方公式:首的平方加减2*首*尾+尾的平方
特点:1必须是三项式
2有两个“项”的平方(有两个“项”的符号相同)
3有这两“项”的2倍或-2倍
方法:分组分解法
如果整式是4项,分组方法有 2 2分
1 3分(必须是完全平方)
例:xa+bx+ya+by
2 2分
xa+bx+ya+by
=(xa+bx)+(ya+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
1 3分
xa+bx+ya+by
=(xa+ya)+(bx+by)
=a(x+y)+b(x+y)
=(a+b)(x+y)
5项:分组分解是2 3分
6项:分组分解是2 2 2分
3 2 1分
3 3分
【提公因式法】
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
例如:-am+bm+cm=-(a-b-c)m
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把2a+1/2变成2(a+1/4)不叫提公因式
【公式法】
两根式:a...
全部展开
【提公因式法】
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
例如:-am+bm+cm=-(a-b-c)m
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把2a+1/2变成2(a+1/4)不叫提公因式
【公式法】
两根式:ax^2+bx+c=a(x-(-b+√(b^2-4ac))/2a)(x-(-b-√(b^2-4ac))/2a)
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
例如:a^2+4ab+4b^2 =(a+2b)^2
【分组分解法】
分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
【十字相乘法】
这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .
例:x2-2x-8
=(x-4)(x+2)
②kx^2+mx+n型的式子的因式分解
如果有k=ab,n=cd,且有ad+bc=m时,那么kx^2+mx+n=(ax+c)(bx+d).
图示如下:
a╲╱c
b╱╲d
例如:(7x+2)(x-3)中a=1 b=7 c=2 d=-3
因为
7.2
1.-3
-3×7=-21,1×2=2,且-21+2=-19,
所以=(7x+2)(x-3).
【配方法】
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
例如:x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).
【多项式因式分解的一般步骤】
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”
几道例题
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何实数x,y,下式的值都不会为33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).
收起