三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y².∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y²我算出0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:12:29

三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y².∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y²我算出0
三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y².
∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y²
我算出0

三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y².∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y²我算出0
因为抛物面z = x² + y²是开口向上的,最低点是(0,0,0)
而z = √(2 - x² - y²)是上半球体,顶点(0,0,√2)
所以√(2 - x² - y²) ≥ x² + y²
√(2 - r²) ≥ r² ==> 0 ≤ r ≤ 1
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(r²→√(2 - r²)) z dz
——————————————————————————————————————
用切片法也行:
z = √(2 - x² - y²) ==> Dz[2]面积:π(2 - z²),1 ≤ z ≤ √2
z = x² + y² ==> Dz[1]面积:πz,0 ≤ z ≤ 1
∫∫∫Ω z dV
= ∫(0→1) z dz ∫∫Dz[1] dxdy + ∫(1→√2) z dz ∫∫Dz[2] dxdy
= ∫(0→1) z * πz dz + ∫(1→√2) z * π(2 - z²) dz
如果反过来的话,那可能是下半球体z = - √(2 - x² - y²)

计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2 三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y².∫∫∫zdv,其中Ω是有曲面积分z=√(2-x²-y²)和z=x²+y²我算出0 计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2,并画出图形. 计算三重积分 ∫∫∫zdv,其中Ω是由曲面x^2+y^2=2z与平面z=2平面所围成的闭区域. 怎样确定柱面坐标系下对z积分的上下限如题 计算三重积分 ∫ ∫ ∫zdv,其中Ω是由曲面z=√(2-x^2-y^2) 及 z^2=x^2+y^2 所围成的闭区域对z积分的上下限要怎样看啊 求助o(╯□╰)o 计算三重积分 ∫∫∫(x^2+y^2)zdv,其中Ω为曲面2z=x^2+y^2与z=2平面所围成的区域. 计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2.讨论http://zhidao.baidu.com/question/348741227.html上面链接是别人回答的. 曲面z=√(2-x^2-y^2)是球面 x^2+y^2+z^2=2的上半部(z>=0)柱面z=x^2+ 计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=0所围成. 计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域 计算三重积分 ∫∫∫Zdv,其中Ω是由上球面Z=根号(4-x^2-y^2 )及拉面x^2+y^2=1.平面Z=0所围成的区域.感激不尽! 三重积分先二后一截面法问题.求∫∫∫3zdv,积分区域是Ω是z=1-x²-¼y²(0≦z≦1),我知道可以变成 3∫zdz∫∫dxdy,而后面与z有关的截面不会求了,同时一般三重积分像椎体域或者球形 曲线积分和曲面积分的几何意义是什么,和二重积分三重积分有什么区别.如果∫后的式子为1,分别表示面积还是体积 化三重积分∫∫∫f(x,y,z)dv为三次积分,其中积分区域Ω为曲面Z=x^2+y^2,Z=2-x^2所围成的闭区域这题很难吗? 利用柱面坐标系求三重积分z=x^2+y^2 z=2y.求∫∫∫Zdv我想了很久了 求助一道三重积分计算题,积分区域图形画不出怎么办?∫∫∫xy dV,其中V是由曲面z=xy与平面x+y=1及z=0所围立体. 计算三重积分∫∫∫(x+y+x)dxdydz其中Ω,曲面z^2=x^2+y^2与平面z=1围成的闭区域答案提示是结合三重积分的对称性,再简化计算.可是我还是不会. 计算三重积分 ∫∫∫Ωdv,其中Ω是由曲面x^2+y^2=2z及平面z=2平面所围成的闭区域 【三重积分】∫∫∫=√(x^2+y^2)dv,其中Ω是曲面z=x^2+y^2,和平面z=1所围的立体.