已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P,Q(1)求证:P是△ACO的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:36:19

已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P,Q(1)求证:P是△ACO的
已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD
已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P,Q
(1)求证:P是△ACO的外心,
(2)若tan∠ABC=3/4,CF=8,求CQ的长

已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P,Q(1)求证:P是△ACO的
(1)你的第一问应是求证:P是ACQ的外心
如图,证明:因AB为⊙O的直径,所以∠ACB=90°,所以∠CAB+∠CBA=90°,
因CE⊥AB,所以∠CAB+∠ACE=90°
所以∠CBA=∠ACE,
因C为弧AD的中点,所以弧AC=弧CD,所以∠CAD=∠CBA,
所以∠ACE=∠CAD, 所以CP= AP.
因∠CQP=∠QAB+∠CBA,所以∠CQP=∠QAB+∠CAD=∠ECB ,所以PC=PQ ,
所以,点P是△ACQ的外接圆圆心即△ACQ外心.
(2)CF=8,我不知道指的是哪条线段.

你的第一问应是求证:P是ACQ的外心
如图,证明:因AB为⊙O的直径,所以∠ACB=90°,所以∠CAB+∠CBA=90°,
因CE⊥AB,所以∠CAB+∠ACE=90°
所以∠CBA=∠ACE,
因C为弧AD的中点,所以弧AC=弧CD,所以∠CAD=∠CBA,
所以∠ACE=∠CAD, 所以CP= AP。
因∠CQP=∠QAB+∠CBA,所以∠CQ...

全部展开

你的第一问应是求证:P是ACQ的外心
如图,证明:因AB为⊙O的直径,所以∠ACB=90°,所以∠CAB+∠CBA=90°,
因CE⊥AB,所以∠CAB+∠ACE=90°
所以∠CBA=∠ACE,
因C为弧AD的中点,所以弧AC=弧CD,所以∠CAD=∠CBA,
所以∠ACE=∠CAD, 所以CP= AP。
因∠CQP=∠QAB+∠CBA,所以∠CQP=∠QAB+∠CAD=∠ECB ,所以PC=PQ ,
所以,点P是△ACQ的外接圆圆心即△ACQ外心。

收起

已知:如图,△ABC内接于⊙O,AB为⊙O的直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于E,且交AC于如图,△ABC内接于O,AB为直径,∠CBA的平分线BD交AC于点已知:如图,△ABC内接于⊙O,AB为⊙O的直径,∠C 已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD已知△ABC内接于圆O,AB为直径,弦CE⊥AB,C是弧AD的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P,Q(1)求证:P是△ACO的 已知:三角形ABC内接于圆O,AB为非直径弦,角CAE=角B.求证:AE与圆O相切于点A 已知:三角形ABC内接于圆O,AB为非直径弦,角CAE=角B.求证:AE与圆O相切于点A 已知:△ABC内接于圆O,AB为直径,∠CAE=∠B,求证:AE与圆O相切于点A △ABC内接于○O过B作直线EF,AB为非直径的弦,已知∠CBF=∠A,求证:EF是○O的切线△ABC是钝角三角形,∠C是钝角. 已知△ABC内接于圆O,CD是AB边上的高,CE为圆O的直径,求证∠ACE=∠BCD △ABC内接于○O过B作直线EF,AB为非直径的弦,已知∠CBF=∠A,求证:EF是○O的切线∠C是钝角 △ABC内接于圆O,AB为非直径的弦,∠CAE=∠B,求证:AE与圆O相切于点A 如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD 已知:三角形ABC内接于圆O,AB为直径,角CAE=角B.求证:AE与圆O相切于点A 1.如图甲,AB为半圆O的直径,弦AD,BC,相交于点P,若CD=3,AB=5,则tan∠BPD等于( )(√为根号)A.√7/3 B.3/4 C.4/3 D.5/32.如图乙,已知圆O的半径为1,锐角△ABC内接于圆O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值为 已知△ABC内接于圆O,AD平分∠BAC交圆O于D交BC于E(AD不为直径),连BD和CD,证明:AB×AC+BD×DC=AD² 九年级数学下如图所示,三角形ABC内接于圆O,∠C=30°,AB=5,则圆O的直径为( ) 已知如图所示三角形ABC内接于圆O,AE是圆O 的直径,CD是三角形ABC中AB边上的高.求证;AC乘以BC等于AE乘以C已知如图所示三角形ABC内接于圆O,AE是圆O 的直径,CD是三角形ABC中AB边上的高。求证;AC 已知三角形ABC内接于圆O,过点A以AC为一边作角EAC,使∠EAC=∠ABC,AB为非直径的弦,EF是圆O的切线吗 ABC内接于园O,AB是园O的直径,CD平分角ABC交圆O于D交AB于F,AB垂直于CD于H,链接CE,OH.求证ACE相似CBF已知,抛物线Y=ax+bx+c,、的对称轴为x=-1,与x轴交于AB两点,与Y轴交于C,其中A(-3,0)C(0,-2) (1)求 三角形ABC内接于圆O,弦CM垂直AB于M,CN是直径,F为弧AB的中点,求证:CF平分角MCN