如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是⌒CAD上一点如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、D重合)时,∠CP’D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:09:45
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是⌒CAD上一点如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、D重合)时,∠CP’D
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是⌒CAD上一点
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、D重合)时,∠CP’D与∠COB有什么数量关系?请证明你的结论.
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是⌒CAD上一点如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、D重合)时,∠CP’D
1、∵ AB为直径,CD是弦,且AB⊥CD 即:B为弧CBD的中点,弧CB=弧BD
∴ ∠COB=∠DOB.( 圆周角推论2:同(等)弧所对圆心角相等)
又∵ 弧CBD为圆周角∠CPD所对的弧
∴∠CPD=∠COB.(弧CBD=2倍弧CB;同弧所对圆周角是圆心角的一半)
2、情况一、当点P’在弧CAD上时:∠CP’D=∠COB
情况二、当点P’在弧CBD上时:∠CP’D=180度-∠COB 推理如下:
∵∠CP’D与∠COD同弧 且:∠COA=∠AOD
∴∠CP’D=∠COA
又∵∠COA=180度-∠COB
∴∠CP’D=180度-∠COB
如图 在圆o中 ab是直径 cd是弦 ce⊥cd cf⊥cd 交ab于e f 求证;ae=be
如图 在圆o中 cd是直径 ab是弦ab⊥cd于M,OM=3,DM=2,求弦AB的长
如图25.2-3所示,AB是⊙O的任一直径,CD是⊙O中不过圆心的一条弦,求证:AB>CD
如图,在⊙O中,弦AB=AC,AD是⊙O的直径,试判断弦BD和CD是否相等,并说明理由.快,
如图,在⊙O中,AB是直径,CD是弦,CE⊥CD于点C,交AB于点E,DF⊥CD于点D,交AB于点F求证:AE=BF.快啊...
1.如图,在⊙O中,AB是直径,CD是弦,CE⊥CD于点C,交AB于点E,DF⊥CD于点D,交AB于点F.求证:AE=BF
如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD
如图,AB是○O的直径,CD是○O中非直径的弦,求证AB>CD
如图在⊙O中,AB是直径,CD是弦,AB丄CD.点P在劣弧CD上(不与C,D重合时)∠CPD与∠COB有什么数量关系?
如图,在⊙O中,AB是⊙O的直径,CD是一条弦,且CD⊥AB于点P.连接BC,AD,求证PC2=PA*PB
如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠A的度数.
如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠A的度数
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.P 是弧CAD上一点(不与C、D重合),P2是⌒CPD上一点(不与C、D重合)1:点P2在劣弧CD
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C,D重合),求证:如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、
如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是⌒CAD上一点如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P 是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB.(2)点P’在弧CD上(不与C、D重合)时,∠CP’D
如图在半圆O中AB是直径CD是一条弦若AB=10则三角形COD的面积的最大值是
已知,如图,在圆O中,AB是圆O的直径,CD是弦,点E,F在AB上,EC⊥CD,PD⊥CD,求证,AE=BF
已知:如图,在圆O中,AB是圆O的直径,CD是弦,点E、F在AB上,EC垂直CD,FD垂直CD求证:AE=BF