关于矩阵可对角化的问题n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:22:17
关于矩阵可对角化的问题n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化?
关于矩阵可对角化的问题
n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化?
关于矩阵可对角化的问题n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化?
可以,这时A的极小多项式是 P(x) 的因子
而P(x)无重根,故A可对角化
可以
我们知道,只要A的极小多项式无重根,A就能对角化。
现在P(A)=0,说明P(x)是A的一个化零多项式,而极小多项式一定是化零多项式的因式。
所以极小多项式也必定是没有重根的,即A可以对角化
关于矩阵可对角化的问题n阶方阵A,满足P(A)=0,其中P(x)是x的多项式函数,且P(x)=0无重根,这时能否推出A可对角化?
线性代数问题:对角化(对于一个n阶可对角化矩阵A.求p,使p(逆)Ap=对角阵)的一般方法是什么?
关于矩阵相似对角化的概念问题!书上给出了结论:若n阶方阵A的n个特征值互不相等,则A可相似对角化为什么反之:A可相似对角化的话,n阶方阵A的n个特征值不一定全都不相等,可能包含有重根
线性代数问题(有关特征值、方阵的对角化)设n阶实方阵A满足A^2-2A-3E=0,则下属选择错误的是a.3是A的特征值b.A是可逆矩阵c.A可以相似对角化d.-1不是A的特征值
关于矩阵相似对角化的问题 A,B是同阶的矩阵 A是可对角化的 题目问怎么证明A B相似.他给的答关于矩阵相似对角化的问题A,B是同阶的矩阵 A是可对角化的 题目问怎么证明A B相似.他给的答案是
已知n阶方阵A满足A^2+2A-3E=0,证明A可对角化
关于线性代数的问题,是不是所有的方阵都有相似矩阵?只不过矩阵的对角化需要条件:有N个线性无关的特征向量
设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.
关于古典伴随方阵性质的一个问题n×n矩阵A与n阶可逆阵P是否满足:(P×A)*×P=|P|×A*啊?如果是的话怎么证啊?
复数域上n阶方阵A,证明A可表示成可对角化的矩阵B和一个幂零矩阵C的和,且BC=CB
矩阵同时对角化的问题矩阵A、B可交换,且都可对角化,证明存在可逆矩阵P使得,P^(-1)AP 和 p^(-1)AP 都是对角矩阵.
线性代数对角化问题A是n阶方阵.证明A平方=A时,A可以对角化
矩阵的相似对角化:若a为n阶方阵,向量a,b线性无关,满足A*a=a+2b,A*b=2a+b,且a+tb为A的特征向量,则t=?
给定A为三阶方阵,求对角化的正交方阵P
关于矩阵对角化的问题既然n阶矩阵A可以对角化的充要条件是A有n个现行无关的特征向量.我们也知道属于不同特征值得特征向量线性无关.那么为什么是对称矩阵对角化非要找个是对称矩阵呢?
高等代数 可对角化线性变换的问题A是方阵,证明,若rank(A)+rank(A-E)=n,则A可对角化.A是方阵,证明,若rank(A+E)+rank(A-E)=n,则A可对角化
矩阵对角化的问题1.若n阶方阵A,有r(A)=1,且trA不为0,证A可对角化2.若A和B都是n阶对角阵,证明A和B相似当且仅当A与B的主对角元素除排列次序外试完全相同的第二个题应该充分性和必要性都证明第
矩阵及其对角化,极小多项式已知复数域上方阵A满足A²+A-3I=O,证明A可对角化,并求其相似对角矩阵