设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:19:06
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
http://baike.baidu.com/view/21085.htm?ss=E48BC58F9822A56383316631A1EB1745D2261ABE
设A,B都是n阶正交矩阵,且|AB|
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
设A,B是n阶正交矩阵,且|A|/|B|=-1,证明|A+B|=0
设A、B为n阶正交矩阵,且|A|不等于|B|.证明:A+B为不可逆矩阵.
设A与B都是N阶正交矩阵试证AB也是正交矩阵
设A,B都是n阶的正交矩阵,证明A的伴随矩阵A*也是正交矩阵
设A,B是n阶正交矩阵,且| A|*| B|= -1,证明| A+B|=0 这个是不一样的!
设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵
设AB为n阶正交矩阵且|A||B|=-1 证明|A+B|=0
设A、B均为n阶正交矩阵,且|AB|=-1,则|A^(-1)B^T|=?
设A,B是两个n阶正交矩阵,且AB的行列式为-1.n为奇数 求A-B的行列式
设A,B是两个n阶正交矩阵,且AB的行列式为-1.证明:A+B的行列式为0
如果实方阵a满足aat=ata=i 则称a为正交矩阵 设a b为同阶正交矩阵 证明:at是正交矩阵;a急AT是正交矩阵;AB是正交矩阵
线性代数:设A和B都是n阶正交矩阵,则在下列方阵中必是正交矩阵的是:请给出证明,
A,B均为n阶正交矩阵,且|A|>0,|B|
设A.B为n阶正交矩阵,n为奇数,证明|(A-B)(A+B)|=0.
A与B为n阶正交矩阵,且n为奇数,证明:(A -B)(A+B)=0
设A是n级正交矩阵,P,Q是n级可逆实矩阵,则A.PAQ是正交矩阵;B.P的转置AP是正交矩阵;C.2A是正交矩阵D.A的伴随矩阵是正交矩阵.