请证明对数的换底公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:27:59

请证明对数的换底公式
请证明对数的换底公式

请证明对数的换底公式
用定义证明:logaN=logbN/logba
证:b^x=N,b^y=a,则a^(x/y)=[a^(1/y)]^x=b^x=N
设a^b=N…(1),则b=logaN…(2),把(2)代入(1)即得对数恒等式:
a^(logaN)=N…(3)
把(3)两边取以m为底的对数得:logaN·logma=logmN
所以logaN=(logmN)/(logma)

N
设y=loga
y
则a =N.
两边取以a为底的对数
a N
ylogm =logm
N
logm
y=-----
a
logm
N
N logm
即 loga =------
a .
logm
设a^b=N…………①

全部展开

N
设y=loga
y
则a =N.
两边取以a为底的对数
a N
ylogm =logm
N
logm
y=-----
a
logm
N
N logm
即 loga =------
a .
logm
设a^b=N…………①
则b=logaN…………②
把②代入①即得对数恒等式:
a^(logaN)=N…………③
把③两边取以m为底的对数得
logaN·logma=logmN
所以
logaN=(logmN)/(logma)

收起