求极限lim(1+3x)^(2/sinx),x趋向于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:56:46

求极限lim(1+3x)^(2/sinx),x趋向于0
求极限lim(1+3x)^(2/sinx),x趋向于0

求极限lim(1+3x)^(2/sinx),x趋向于0
lim(1+3x)^(2/sinx)
=lim e^ln((1+3x)^(2/sinx))
=lim e^[2ln(1+3x)/sinx]
=lim e^(2*3x/x)
=e^6

设lim(1+3x)^(2/sinx)=a
lim[(1+3x)^1/(3x)]^(6x/sinx)=a
lnlim[(1+3x)^1/(3x)]^(6x/sinx)=lna
limln(1+3x)^1/(3x)]^(6x/sinx)=lna
lim(6x/sinx)ln(1+3x)^1/(3x)]=lna
lim(6x/sinx)*limln(1+3x)^...

全部展开

设lim(1+3x)^(2/sinx)=a
lim[(1+3x)^1/(3x)]^(6x/sinx)=a
lnlim[(1+3x)^1/(3x)]^(6x/sinx)=lna
limln(1+3x)^1/(3x)]^(6x/sinx)=lna
lim(6x/sinx)ln(1+3x)^1/(3x)]=lna
lim(6x/sinx)*limln(1+3x)^1/(3x)]=lna
6*lnlim(1+3x)^1/(3x)]=lna
6*lne=lna
lna=6
a=e^6
好奇妙,我竟解出来了!

收起