an=1/n(n+2),Tn为an数列前n项的和,证明T
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:44:12
an=1/n(n+2),Tn为an数列前n项的和,证明T
an=1/n(n+2),Tn为an数列前n项的和,证明T
an=1/n(n+2),Tn为an数列前n项的和,证明T
题错了,应为小于3/4;
前三项的和为63/120(1/3+1/8+1/15),已大于1/2.
Tn=1/(1*3)+1/(2*4)+1/(3*5)⋯⋯+1/(n(n+2))
=(1/2)(1/1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+⋯⋯+
(1/2)(1/n-1/(n+2))
=(1/2)(1/1-1/3+1/2-1/4+1/3-1/5+⋯⋯+1/n-1/(n+2))
=(1/2)(3/2-1/(n-2))
小于3/4
an=1/n(n+2)=1/2 (1/n-1/(n+2))
Tn=a1+a2+...an=1/2(1-1/(1+2)+1/2-1/(2+2)+1/3-1/(3+2)......-1/(n+2))
=1/2(1+1/2-1/(n+1)-1/n+2)=3/4-(1/2)(1/n+1+1/(n+2))
1/(n+1)+1/(n+2)>0,
Tn=3/4-(1/2)1/(n+1)+1/(n+2)<3/4
a(n) = (n+1)/[n(n+1)(n+2)] = [(n+2)-1]/[n(n+1)(n+2)]
= 1/[n(n+1)] - 1/[n(n+1)(n+2)]
= 1/n - 1/(n+1) - (1/2){1/[n(n+1)] - 1/[(n+1)(n+2)] },
t(n) = a(1)+a(2)+a(3)+...+a(n-1)+a(n)
=1/1-1/...
全部展开
a(n) = (n+1)/[n(n+1)(n+2)] = [(n+2)-1]/[n(n+1)(n+2)]
= 1/[n(n+1)] - 1/[n(n+1)(n+2)]
= 1/n - 1/(n+1) - (1/2){1/[n(n+1)] - 1/[(n+1)(n+2)] },
t(n) = a(1)+a(2)+a(3)+...+a(n-1)+a(n)
=1/1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/(n-1)-1/n + 1/n-1/(n+1) - (1/2){1/[1*2]-1/[2*3] + 1/[2*3]-1/[3*4] + 1/[3*4]-1/[4*5] + ... + 1/[(n-1)n]-1/[n(n+1)] + 1/[n(n+1)]-1/[(n+1)(n+2)] }
=1/1 - 1/(n+1) - (1/2){1/[1*2] - 1/[(n+1)(n+2)]}
= 1 - 1/(n+1) - 1/4 + (1/2)/[(n+1)(n+2)]
= 3/4 - [2(n+2) - 1]/[2(n+1)(n+2)]
= 3/4 - (2n+3)/[2(n+1)(n+2)]
= 3/4 - (1/2)[1/(n+1) + 1/(n+2)],
{t(n)}单调递增。
1/3 = t(1) < t(n) < 3/4.
收起