an=1/n(n+2),Tn为an数列前n项的和,证明T

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:44:12

an=1/n(n+2),Tn为an数列前n项的和,证明T
an=1/n(n+2),Tn为an数列前n项的和,证明T

an=1/n(n+2),Tn为an数列前n项的和,证明T
题错了,应为小于3/4;
前三项的和为63/120(1/3+1/8+1/15),已大于1/2.
Tn=1/(1*3)+1/(2*4)+1/(3*5)⋯⋯+1/(n(n+2))
=(1/2)(1/1-1/3)+(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+⋯⋯+
(1/2)(1/n-1/(n+2))
=(1/2)(1/1-1/3+1/2-1/4+1/3-1/5+⋯⋯+1/n-1/(n+2))
=(1/2)(3/2-1/(n-2))
小于3/4

an=1/n(n+2)=1/2 (1/n-1/(n+2))
Tn=a1+a2+...an=1/2(1-1/(1+2)+1/2-1/(2+2)+1/3-1/(3+2)......-1/(n+2))
=1/2(1+1/2-1/(n+1)-1/n+2)=3/4-(1/2)(1/n+1+1/(n+2))
1/(n+1)+1/(n+2)>0,
Tn=3/4-(1/2)1/(n+1)+1/(n+2)<3/4

a(n) = (n+1)/[n(n+1)(n+2)] = [(n+2)-1]/[n(n+1)(n+2)]
= 1/[n(n+1)] - 1/[n(n+1)(n+2)]
= 1/n - 1/(n+1) - (1/2){1/[n(n+1)] - 1/[(n+1)(n+2)] },
t(n) = a(1)+a(2)+a(3)+...+a(n-1)+a(n)
=1/1-1/...

全部展开

a(n) = (n+1)/[n(n+1)(n+2)] = [(n+2)-1]/[n(n+1)(n+2)]
= 1/[n(n+1)] - 1/[n(n+1)(n+2)]
= 1/n - 1/(n+1) - (1/2){1/[n(n+1)] - 1/[(n+1)(n+2)] },
t(n) = a(1)+a(2)+a(3)+...+a(n-1)+a(n)
=1/1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/(n-1)-1/n + 1/n-1/(n+1) - (1/2){1/[1*2]-1/[2*3] + 1/[2*3]-1/[3*4] + 1/[3*4]-1/[4*5] + ... + 1/[(n-1)n]-1/[n(n+1)] + 1/[n(n+1)]-1/[(n+1)(n+2)] }
=1/1 - 1/(n+1) - (1/2){1/[1*2] - 1/[(n+1)(n+2)]}
= 1 - 1/(n+1) - 1/4 + (1/2)/[(n+1)(n+2)]
= 3/4 - [2(n+2) - 1]/[2(n+1)(n+2)]
= 3/4 - (2n+3)/[2(n+1)(n+2)]
= 3/4 - (1/2)[1/(n+1) + 1/(n+2)],
{t(n)}单调递增。
1/3 = t(1) < t(n) < 3/4.

收起

设数列{an}的前n项积为Tn,Tn=1-an.(1)证明:数列{1/Tn}成等差数列;(2)求{an}的通项. an=1/n(n+2),Tn为an数列前n项的和,证明T 已知以1为首项数列{an}满足: an +1(n为奇数) an+1={an/2(n为偶数)}设数列{an}前n项和为sn,求数列{sn}前n项和Tn 已知数列{an}的前n项和为Sn,且an=1,Sn=nan-2n(n-1) ,设数列{1/an*a(n+1)}的前n项和为Tn,求Tn 设数列{an}的前n项积为Tn,Tn=1-an(1)证明:数列[1/Tn}成等差数列:(2)求数列{an}的前n项和Sn 若数列an的前n项和为Tn,且an=1/(n+1)(2n+1),证明Tn 已知数列{an}的前n项和为Sn=2的n-1次方,求数列1除以an的前n项和Tn急 已知数列{an}的前n项和为Sn=2^n-1,求数列{1/an}的前n项和Tn 在数列an中,其前N项和Sn=1/3n(n+1)(n+2).记Tn为数列(1/an)的前N项和.求lim(n→∞)Tn 高一数学:数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n属于N*)求数列{an}的通项an求数列{nan}的前n项和Tn 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn 【高一数学】数列{an}前n项和Sn=-n^2+9n,bn=|an|设bn前n项和为Tn,求Tn 数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*)1、求{an}2、求数列{n乘an}前n项和Tn 数列的前n项的sn=n^2 求数列{an}的通项公式,bn=2/(2n+1)an数列前n项和为Tn ,Tn>9/10 的最小正整数的值 数列an=4n-3,bn=1/(an·a(n+1),Tn为数列{bn}前n-1项和,求Tn. 设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096(2)设数列{log an}的前n项和为Tn,对数列{Tn},从第几项起Tn 很简单的数列题已知数列{an}an=2^(n-1),a1=1,设数列{n*an}的前n项和为Tn,求Tn.