如图,P是等边三角形ABC内一点,链接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ.如图,P是等边三角形ABC内一点,连接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ,观察并猜想AP

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:31:39

如图,P是等边三角形ABC内一点,链接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ.如图,P是等边三角形ABC内一点,连接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ,观察并猜想AP
如图,P是等边三角形ABC内一点,链接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ.
如图,P是等边三角形ABC内一点,连接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ,观察并猜想AP与CQ之间的大小关系,并证明你的猜想.

如图,P是等边三角形ABC内一点,链接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ.如图,P是等边三角形ABC内一点,连接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ,观察并猜想AP
AP=CQ
证明:
∵∠PBQ=60°,且BQ=BP
∴△PBQ是等边三角形
∵△PBQ是等边三角形
∴∠ABC=60°
∴∠ABP=∠CBQ=60°-∠PBC
在△ABP和△CBQ中
AB=CB,∠ABP=∠CBQ,BP=BQ
∴△ABP ≌ △CBQ(SAS)
∴AP=CQ

如图,P是等边三角形ABC内的一点,连接PA,PB,PB,以BP为边作∠PBQ=60°所以CQ:PQ:PC=3:4:5 所以三角形PCQ为直角三角形,且∠PQC=90°

AB=BC BQ=BP 角ABP=角ABP
故 三角形ABP全等于三角形ABP
故 AP=CQ

1)相等
∵等边△ABC
∴AB = BC,∠ABC = 60°
∵∠PBQ = 60°
∴∠ABP = ∠CBQ
∵BP = BQ
∴△ABQ≌△CBQ
∴AP = CQ
2)直角三角形
证明:
∵∠PBQ = 60°,BP = BQ
∴△BPQ是等边三角形
∴PQ = BP
∵AP = CQ...

全部展开

1)相等
∵等边△ABC
∴AB = BC,∠ABC = 60°
∵∠PBQ = 60°
∴∠ABP = ∠CBQ
∵BP = BQ
∴△ABQ≌△CBQ
∴AP = CQ
2)直角三角形
证明:
∵∠PBQ = 60°,BP = BQ
∴△BPQ是等边三角形
∴PQ = BP
∵AP = CQ(第一题结论)
∴CQ:PQ:PC = PA:PB:PC=3:4:5
∴满足CQ²+PQ²=PC²
∴△PQC是直角三角形

收起

如图,p是等边三角形abc内的一点, 如图,P是等边三角形ABC内一点,链接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ.如图,P是等边三角形ABC内一点,连接PA、PB、PC,以BP为其中一边作∠PBQ=60°,且BQ=BP,链接PQ、CQ,观察并猜想AP 如图,点P是等边三角形ABC内一点,且点P到三边的距离分别是1,2,3,求面积 如图,P是等边三角形ABC内的一点,连接AP,PB,以BP为边作等边三角形PBO,判断AP与CQ大小关系,并说明理由 如图,△ABC是等边三角形,BD是中线,P是直线BC上的一点. 如图,点P是等边三角形ABC内一点,点P到三边的距离分别为PE,PF,PG,等边三角形ABC的高为AD,求证:PE+PF+PG=AD 如图,三角形ABC是等边三角形,P为三角形ABC内任意一点,PE//AB,PF//AC,那么三角形PEF是什么三角形?说明理由. 如图,三角形ABC是等边三角形.P为三角形ABC内任意一点,PE⊥AB,PF⊥AC,三角形PEF是什么三角形,说明理由 如图:点p是等边三角形ABC内一点,PA=3 PB=5 PC=4.求:三角形ABC的面积.rt 如图:点p是等边三角形ABC内一点,PA=3 PB=5 PC=4.求:三角形ABC的面积 如图,点P是等边三角形ABC内一点,PA=2,PB=4,PC=二倍根号三,求△ABC的面积 如图,从等边三角形ABC内一点P向三边作垂线,PQ=6,PR=8,.PS=10,则三角形ABC的面积是? 如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作等边三角形BPM,连接CM. (1)观察并猜想AP如图,P是等边三角形ABC内的一点,连接PA、PB、PC,以BP为边作等边三角形BPM,连接CM.(1)观察 如图,P是等边三角形ABC外接圆弧BC上一点,求证PA=PB+PC 设P是等边三角形ABC内的任意一点,求证;P到等边三角形三条边距离之和为定值 如图,已知三角形ABC是等边三角形,P是三角形内一点,∠BPC=150°,PB=2,PC=1,求PA的长 如图 在等边三角形ABC内接于圆 P为BC上任意一点 求证AP=BP+CP 如图,P是等边三角形ABC内一点,PC=3,PA=4,PB=5,求AB的边长