若A与B相似,且A为正定矩阵,则B为正定矩阵.对不对呢老师?懂了懂了,相似则特征值一定相同,所以如果B是正定矩阵,那B的特征值都大于零,而A的特征值与B相同,所以B也是正定矩阵.老师,这样理解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:28:20
若A与B相似,且A为正定矩阵,则B为正定矩阵.对不对呢老师?懂了懂了,相似则特征值一定相同,所以如果B是正定矩阵,那B的特征值都大于零,而A的特征值与B相同,所以B也是正定矩阵.老师,这样理解
若A与B相似,且A为正定矩阵,则B为正定矩阵.对不对呢老师?
懂了懂了,相似则特征值一定相同,所以如果B是正定矩阵,那B的特征值都大于零,而A的特征值与B相同,所以B也是正定矩阵.老师,这样理解对不对?
若A与B相似,且A为正定矩阵,则B为正定矩阵.对不对呢老师?懂了懂了,相似则特征值一定相同,所以如果B是正定矩阵,那B的特征值都大于零,而A的特征值与B相同,所以B也是正定矩阵.老师,这样理解
A,B为实对称矩阵时, 你的推导是对的
不过,线性代数一般讨论的是实对称矩阵
不是实对称矩阵时看看电灯给的反例
若A与B相似,且A为正定矩阵,则B为正定矩阵.对不对呢老师?懂了懂了,相似则特征值一定相同,所以如果B是正定矩阵,那B的特征值都大于零,而A的特征值与B相同,所以B也是正定矩阵.老师,这样理解
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵 D正交矩阵
线性代数证明题,若A,B均为正定矩阵,则A+B也是正定矩阵
A,B均为Hermite矩阵,且A正定,试证AB相似于实对角矩阵.
A是n阶正定矩阵,B是n阶半正定矩阵,A^2=B^2.证明:B是正定矩阵,且A与B相似
证明:A,B均为N阶正定矩阵,则A+B也为正定矩阵
线代 正定矩阵问题我以前看到一个正定矩阵的性质:若A,B为n阶正定矩阵,则A+B也是正定矩阵,但AB,BA不一定是正定矩阵.现在做到一道题:A,B都是n阶正定矩阵,证:AB的特征值全大于零.这不与那
矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?矩阵A与B合同,B为正定矩阵,那么A正定矩阵吗?(请予以证明)要先证明A为可逆阵
设A,B为正定矩阵,证明A+B为正定矩阵.
设A,B为正定矩阵,证明A+B为正定矩阵.
大学矩阵问题,在清华的线性代数上看到的一题,若A,B均为正定矩阵,且AB=BA,证明AB为正定矩阵,本人只知道一种方法是利用AB与一个正定矩阵相似得到,但下面提示可以用主子式做出来,我还很少遇
设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B|
已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.
大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.
矩阵代数证明题!若A与A-B^HAB同为Hermite正定矩阵,则p(B)
A,B是正定矩阵 AB=BA 证明AB也为正定矩阵
设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.
矩阵A为Hermite正定矩阵的充分必要条件存在Hermite正定矩阵B,使得A=B*B