急 ,sin2A/sin2B+cos2Acos2C=1,证明tan2A/tan2B=sin2C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:33:40

急 ,sin2A/sin2B+cos2Acos2C=1,证明tan2A/tan2B=sin2C
急 ,sin2A/sin2B+cos2Acos2C=1,证明tan2A/tan2B=sin2C

急 ,sin2A/sin2B+cos2Acos2C=1,证明tan2A/tan2B=sin2C
题中的2不是二倍,而是平方.
证明:
sin²A/sin²B+cos²Acos²C=1
cos²C= (1-sin²A/sin²B)/cos²A
= 1/cos²A - sin²A/cos²A/sin²B
= (sin²A+cos²A)/cos²A - tan²A/sin²B
= tan²A + 1 - tan²A/sin²B
= 1 + tan²A(1- 1/sin²B)
= 1 + tan²A(sin²B-1)/sin²B {sin²B-1 = -cos²B}
= 1 - tan²Acos²B/sin²B
= 1 - tan²A/tan²B
sin²C= 1-cos²C
= 1-(1 - tan²A/tan²B)
= tan²A/tan²B
证明完毕.