设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:00:15

设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列
设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列

设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列
首先等差数列的通项公式是关于n的一次式
bn是等差数列,设bn=A*n+B
则:a1+a2+a3+a4+...+an=n(A*n+B)=A(n^2)+Bn
a1+a2+a3+a4+...+a(n-1)=A((n-1)^2)+B(n-1)
相减得:an=A(2n-1)+B=A*n+(B-A)
故an是等差数列

设数列an,bn满足:bn=(a1+a2+a3+a4+...+an)/n,若bn是等差数列,求证an也是等差数列 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3求通项an,bn 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn 用数列an表示an+1;并证明;任意n属于设数列{an},{bn}满足;a1=4 a2=5/2,an+1=an+bn/2,bn+1=2anbn/an+bn (1)用数列an表示an+1;并证明;任意n属于N*都 已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任 已知数列an满足an=31-6n,数列bn满足bn=(a1+a2+...+an)/n,求数列bn的前20项之和. 设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] .设各项均为正数的数列{an}和{bn}满足5^[an ],5^[bn] ,5^[a(n+1)] 成等比数列,lg[bn],lg[a(n+1)],lg[bn+1]成等差数列,且a1=1,b1=2,a2=3,求通项an、bn. 设数列{an}{bn}满足a1=b1=6 a2=b2=4 a3=b3=3若{an+1 - an}为等差数列.{bn+1 -bn}为等比数列.分别求{an}{bn}的通项公式. 已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!! 已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通用公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果 数列 (30 20:12:4)设两个数列{An},{Bn}满足Bn=(a1+2*a2+3*a3+…+n*an)/(1+2+3+…+n),若{Bn}为等差数列,求证:{An}也为等差数列 设数列{an}满足a1+3a2+3^2a3+...+3^n-1an=n/3,求(1)数列{an}的通项公式(2)设bn=n/an求数列bn的前n项 设等差数列{an}中,a1=2,a2+a4+a6=24,n为实数 若数列{bn}满足bn=an/2^n+1求数列{bn}的前n项和Tn的表达式详细~ 设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列···设数列{an}和{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,数列{an+1-an}是等差数列,Sn为数列{bn}的前n项和,且Sn=2n-bn+10,(1)分别求{an}{bn}的通项公式(2 两个数列{an}和{bn}满足bn=a1+2a2+...+nan/1+2+...+n,求证:若{bn}为等差数列,则数列{an}也是等差数列?能看懂的 数列{an}{bn}满足bn=a1+2a2+3a3+…+nan/(1+2+3+…+n),若数列{an}为等差数列,求证;{bn}为等差数列. 设数列{an}满足a1+2a2+3a3+……+nan=2^n(n∈N*) 求数列{an}的通项公式 设bn=n^2*an,求数列bn的前n项和 设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn的前n项和Sn设数列an满足a1+2a2+3a3+.+nan=2^n(n属于N*)求数列an的通项公式 设bn=n^2an,求数列bn的前n项和Sn