已知平面内两定点(-1,0),(1,0),与两定点的距离的平方差的绝对值为1的点轨迹方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:50:25

已知平面内两定点(-1,0),(1,0),与两定点的距离的平方差的绝对值为1的点轨迹方程
已知平面内两定点(-1,0),(1,0),与两定点的距离的平方差的绝对值为1的点轨迹方程

已知平面内两定点(-1,0),(1,0),与两定点的距离的平方差的绝对值为1的点轨迹方程
设(X,Y)是轨迹上的点
与两定点的距离的平方差的绝对值为1
|[(X+1)²+y ²]-[(X+1)²+y²]|=1
化简得:4x=1,即x=1/4

16x^2=1

x=1/4对吗

已知平面内两定点(-1,0),(1,0),与两定点的距离的平方差的绝对值为1的点轨迹方程 已知平面内两定点A(0,1)B(0,-1)动点M到A,B的距离之和为4,则动点M的轨迹方程为? 已知平面内的动点p到两定点M(-2,0)N(1,0)的距离之2:1求p轨迹方程 平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距   练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点 已知两定点A(-3,0),B(3,0),平面内有一动点N,且||NA|-|NB||=4,求N的轨迹方程 已知动点P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值1/2 已知动点P与平已知动点P与平面上两定点A(-√2,0),B(√2,0)连线的斜率的积为定值1/2已知动点P与平面上两定点A(-√2,0),B(√ 平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于非零 已知直角坐标平面系内有一点P,P到两坐标轴距离相等,且P到两定点A[-1,3],B[2,4]距离相等,求P点坐标 已知,平面上两定点A,B间的距离为2,求与定点距离的平方差等于常数1的点的轨迹方程 已知,平面上两定点A,B间的距离为2,求与定点距离的平方差等于常数1的点的轨迹方程 已知两定点A(-2,0),B(2,0),P为坐标平面内的动点,满足|AB|*|AP|+AB*BP=0,点P轨迹方程是向量 已知A(-跟3/2,0),B(跟3/2,0)为平面内两定点,动点P满足|PA|+|PB|=2 求动点P的轨迹方程 已知平面内两定点A、B,|AB|=2a,如果动点P到A的距离和到点B的距离之比是2:1,求动点的轨迹. 平面内两定点F1(0,-5),F2(0,5),则平面上到这两个定点的距离之差的绝对值等于6的点的轨迹方程是? 已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足 .已知平面上两定点M(0,-2)、N(0,2),P为一动点,满足 .(1)求动点P的轨迹C的方程;(2)若A、B是轨迹C上的两不同动点,且 .分别以A、B为切点 平面直角坐标系中,O为坐标原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足向量OP=m向量OA+(m-1)*向量OB,求点P的轨迹方程 平面直角坐标系中,O为原点,已知两定点A(1,0),B(0,-1),动点P(x,y)满足:OP=mOA+(m-1)OB,求点P的轨迹方程 已知动点P与平面上两定点A(√2,0),B(√2,0)连线的斜率的积为定值-1/2 求动点P的轨迹方程.