已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R)已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA与向量OB夹角的取值范围是(C) A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:09:31
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R)已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA与向量OB夹角的取值范围是(C) A
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R)
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA与向量OB夹角的取值范围是(C) A.【0,/4】 B.【π/4,5π/12】 C.【π/12,5π/12】D.【5π/12,π/2】
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R)已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA与向量OB夹角的取值范围是(C) A
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R)已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA与向量OB夹角的取值范围是(C) A
已知向量OB=(2,0),向量OC=(2,2),向量CA=(根号2cosa,根号2Ssina),则向量OA与OB的夹
已知向量OA.向量OC满足条件向量OA+向量OB-向量OC=向量0,且【OA】=【OB】=1,【OC】=根号2则三角形ABC的
已知△OAB是以OB为斜边的等腰直角三角形,OB=根号2 向量OC=向量OA+(1-a)向量OB,向量OC=向量OA+(1-a)向量OB 若a^2>1 则向量OC*向量AB的取值范围是( )A.(负无穷,0)∪(2,正无穷) B,(负无穷,-2)∪
已知平面上有四点O,A,B,C,满足向量OA+向量OB+向量OC=0,向量OA*向量OB=向量OB*向量OC=向量OC*向量OA求周长
已知向量OB=(根号二,0),OC=(根号二,根号二),CA=(cosa,sina )),(a为角度,属于R),则向量OA接上题:与向量OB夹角的取值范围是(C) A.【0,/4】 B.【π/4,5π/12】 C.【π/12,5π/12】D.【5π/12,π/2】 (注
向量的加减已知(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0判断三角形ABC的形状
一、已知向量OA绝对值=1,向量OB的绝对值=根号3,向量OA*向量OB=0,点C在角AOB内,且角AOC=30度,设向量OC=M*向量OA +N*向量OB(M,N∈实数),则m/n等于?二、设向量a=(1,-2),向量b=(-2,4),向量c=(-1,-2),若表示向量
向量OA+向量OB+向量OC=0向量,且OA=1 OB=2 OC=根号3 则三角形ABC面积
已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正三角形
已知向量OA,OB,OC满足条件OA+OB+OC=0(都是向量),且|OA|=|OB|=|OC|=1,求证:△ABC是正三角形
已知向量OA的绝对值=向量OB的绝对值=向量OC的绝对值=1,向量OA⊥向量OB ,向量CB乘以向量CA≤0,向量OA+向量OB-向量OC的绝对值的最大值?
已知向量OA的模=1 向量OB模:根号3 向量OA*OB=0,点C在角AOC内,且角AOC=30度 设向量OC=mOA+OB 则m/n等于什么
已知O为ΔABC的重心,证明 向量OA+向量OB+向量OC=0
已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x)求证OA+OC与OB共线,且OA-OC与OB垂直已知O为坐标原点,向量OA=(1,0),向量OB=(cosX,sinX),OC=(cos2x,sin2x).求证OA+OC与OB共线,且向量OA-向量OC与OB垂直
已知三角形ABC中,cosA=五分之2倍根号5,cosB=十分之三倍根号十,O为三角形内心,二倍根号五向量OA+根号十向量OB+m向量OC=0向量,则m=
已知向量OA的模=2,向量OB的模=2根号3,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB来表示向量OC,则向量OC等于
已知向量OA的模=2,向量OB的模=2根号2,向量OA*向量OB=0,点C在AB上角AOC=30°,用向量OA和向量OB来表示向量OC,则向量OC等于