若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()A连续且可微 B连续但不一定可微C可微但不一定连续 D不一定可微也不一定连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:16:19

若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()A连续且可微 B连续但不一定可微C可微但不一定连续 D不一定可微也不一定连续
若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()
A连续且可微 B连续但不一定可微
C可微但不一定连续 D不一定可微也不一定连续

若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()A连续且可微 B连续但不一定可微C可微但不一定连续 D不一定可微也不一定连续
函数z=f(x,y)在点(x0,y0)处具有两个偏导数fx(x0,y0)、fy(x0必要条件 D. 既不是充分条件,又不是必要条件 c

函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()A.连续 B.不连续 C.可微 D.不一定可微 2.若fx(x0,y0)=fy(x0,y0)=0,则点(x0,y0)一定是函数f (x,y)的( ) 函数z=f(x)有fx(x0,y0),fy(x0,y0)存在,则有f(x0,y0)存在.为什么 设二元函数f(x,y)在点(x0,y0)处满足fx(x0,y0)=0,且fy(x0,y0)=0,则有?f(x,y)在点(x0,y0)处一定取得最大值吗?还是最小值?f(x,y)在点(x0,y0)处一定取得极值?还是不一定取得极值? 若fx(x0,y0),fy(x0,y0)存在,则函数f(x,y)在点(x0,y0)处()A连续且可微 B连续但不一定可微C可微但不一定连续 D不一定可微也不一定连续 可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件? “fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的什么条件? 函数z=f(x)在点(x0,y0)具有偏导数,则它在点(x0,y0)的极值的(是什么条件)为fx(x0,y0)=0,fy(x0,y0)=0A,必要条件B,充分条件C,必要不充分条件D,既不充分又非必要条件 设f(x,y)与φ(x,y)均为可微函数,且φ对y的偏导数不为零,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是:A .若fx(x0,y0)=0,则fy(x0,y0)=0B .若fx(x0,y0)=0,则fy(x0,y0)≠0C .若fx(x0,y0)≠0, 详细哦、若fx(x0,y0)=fy(x0,y0)=0,则函数f(x,y)在点(x0,y0)处()A.连续 B.偏导数存在 C.有极值 d.可微 设z=f(x,y)在点(x0,y0)处自变量有增量Δx,Δy,函数全增量为Δz,若函数在该点可微,则在点(x0,y0)处:A Δt=-dzB Δz=fx(x0,y0)+fy(x0,y0)CΔz=fx(x0,y0)dx+fy(x0,y0)dyDΔz=dz+op(p=根号下Δx^2+Δy^2) 偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?充分非必要必要非充分充要非充非要 一个偏导数的证明题设F(X,Y)具有一阶连续偏导数,且(Fx)^2+(Fy)^2不等于0.对任意实数t有F(tx,ty)=tF(x,y),试证明曲面Z=F(X,Y)上任一点(X0,Y0,Z0)处的发现与直线(X/X0)=(Y/Y0)=(Z/Z0)相垂直. 设可微函数z=f(x,y)在点(x0,y0)取得极值,这下列说法错误的是A、fx(x0,y0)=fy(x0,y0)=0;B、曲面z=f(x,y)在(x0,y0,z0)处具有水平的切平面;C、fxy(x0,y0)=0;D、dz|(x0,y0)=0;但是我找不出来哪个是错的? 高数 拉格朗日乘数法(2元的)推理疑问与(7)一行的 fy(X0,y0)+λφy(x0,y0)=0 怎么推导出来的 若直线L:F(X,Y)=0不过点(X0,Y0),则方程F(X,Y)-F(X0,Y0)=表示什么.F(X,Y)-f(X0,Y0)=0 很简单的绝对值.一就是这个两红圈中的, 我是 这样算的“ 2X0-Y0+3=X0+Y0-1 或 -(2X0-Y0+3)=-(X0+Y0-1) ”为什么答案算出来一样呢? 若曲线y=x^3在(X0,Y0)处切线斜率等于3,求点(X0,Y0)的坐标