当x>1时,不等式mx^2+mx+1≥x恒成立,则实数m的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:53:06

当x>1时,不等式mx^2+mx+1≥x恒成立,则实数m的取值范围是
当x>1时,不等式mx^2+mx+1≥x恒成立,则实数m的取值范围是

当x>1时,不等式mx^2+mx+1≥x恒成立,则实数m的取值范围是
答:
x>1时:
mx^2+mx+1>=x
m(x^2+x)>=x-1>0
m>=(x-1)/(x^2+x)
=(x-1)*[1/x-1/(x+1)]
=(x-1)/x-(x-1)/(x+1)
=1-1/x-(x+1-2)/(x+1)
=1-1/x-1+2/(x+1)
=2/(x+1)-1/x
设f(x)=2/(x+1)-1/x
求导:f'(x)=-2/(x+1)^2+1/x^2
解f'(x)=-2/(x+1)^2+1/x^2=0
得:x^2+2x+1=2x^2
x^2-2x+1=2
(x-1)^2=2
x-1=√2
x=1+√2
1