Jordan标准型的写法已知一个3阶矩阵,特征值为-1(二重)和4.现求出特征值-1对应2个一阶块.则Jordan标准型应该写成什么样.(下面提供了几种形式,哪个对?)-1 0 00 -1 00 0 4-1 1 00 -1 00 0 44 0 00 -1 00 0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:50:45
Jordan标准型的写法已知一个3阶矩阵,特征值为-1(二重)和4.现求出特征值-1对应2个一阶块.则Jordan标准型应该写成什么样.(下面提供了几种形式,哪个对?)-1 0 00 -1 00 0 4-1 1 00 -1 00 0 44 0 00 -1 00 0
Jordan标准型的写法
已知一个3阶矩阵,特征值为-1(二重)和4.现求出特征值-1对应2个一阶块.则Jordan标准型应该写成什么样.
(下面提供了几种形式,哪个对?)
-1 0 0
0 -1 0
0 0 4
-1 1 0
0 -1 0
0 0 4
4 0 0
0 -1 0
0 0 -1
4 0 0
0 -1 1
0 0 -1
Jordan标准型的写法已知一个3阶矩阵,特征值为-1(二重)和4.现求出特征值-1对应2个一阶块.则Jordan标准型应该写成什么样.(下面提供了几种形式,哪个对?)-1 0 00 -1 00 0 4-1 1 00 -1 00 0 44 0 00 -1 00 0
特征值-1对应2个一阶块
那A可对角化,1,3 正确
b d是一样的,b 和d
Jordan标准型的写法已知一个3阶矩阵,特征值为-1(二重)和4.现求出特征值-1对应2个一阶块.则Jordan标准型应该写成什么样.(下面提供了几种形式,哪个对?)-1 0 00 -1 00 0 4-1 1 00 -1 00 0 44 0 00 -1 00 0
请教一个矩阵的题,已知三阶非零矩阵,A的平方等于0,求其特征值和Jordan标准型.
jordan标准型与可对角化的关系为何一个矩阵可对角化当且仅当它的jordan标准型是对角阵?对于jordan标准型是对角阵推出矩阵可对角化是显然的,那矩阵可对角化如何推出jordan标准型是对角阵?
Jordan标准型的应用
矩阵理论 jordan标准型中每个jordan块对应一个初等因子,那么jordan的标准型维数是不是有可能大于原矩阵如题;因为特征矩阵的史密斯标准型的对角线元素是不变因子,而一个不变因子可能分解
高等代数问题:Jordan标准型的知识,为什么要研究这个东东,为了解决什么问题而诞生的呢?一个矩阵和Jordan标准型相似或者合同,有什么好处和意义?
怎样用相似初等变换将一般矩阵化为Jordan标准型用相似初等变换,将一个一般矩阵一步一步的化为Jordan标准型,先打为上三角,然后准对角,最终打成Jordan标准型,有没有人见过这样的论文,我以前
怎样把一个已知的三阶矩阵化为约当标准型
矩阵的几种标准型分别是什么关于矩阵标准型比如有:Jordan标准型,史密斯标准型,有理标准型....想了解具体的类别,能否推荐几本相关文献。
矩阵2 2 0 0,0 2 0 0,0 0 3 3,0 0 0 3的Jordan标准型和最小多项式是什么,
矩阵2 2 0 0,0 2 0 0,0 0 3 3,0 0 0 3的Jordan标准型和最小多项式是什么,
jordan标准型的意义和应用是什么
如何求矩阵jordan标准型如题最好有例子
分块矩阵【A B ; B A】的Jordan标准型,与A和B的Jordan标准型有和关系?他们之间的特征值如何联系?矩阵分析的菜鸟,急着对付考试,
线性代数Jordan标准型问题若存在T,是T-1AT=DD是这样一个矩阵,主对角元上元素任意(当然这是受限于A的)主对角元旁边上方的次对角线上的元素是0或1,那是不是D就是它的Jordan标准型是请给出证
特征值无重根的矩阵,它的特征多项式和极小多项式是不是一样的?如题.我用matlab求矩阵A的jordan标准型(jordan(A)),提示:found roots of minimal polynomial that cannot be determined in terms of the radicals.一个矩
如何用初等变换法(特征执法)将JORDAN矩阵化为标准型?没有思路,
什么是矩阵的等价标准型?