概率论与数理统计题:证明:若X与Y相互独立,则D(X+Y))=D(X)+D(Y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:50:12

概率论与数理统计题:证明:若X与Y相互独立,则D(X+Y))=D(X)+D(Y)
概率论与数理统计题:证明:若X与Y相互独立,则D(X+Y))=D(X)+D(Y)

概率论与数理统计题:证明:若X与Y相互独立,则D(X+Y))=D(X)+D(Y)
设Z = X + Y
E(Z)=E(X)+E(Y)
方差的定义:D(Z) = E{(Z-E(Z))²}
D(Z) = D(X+Y) = E{(X+Y)² - (E(X)+E(Y))²} = E(X² - E²(X)) + E(Y² - E²(Y))+
+ E(2XY) - 2E(X) E(Y) = D(X) + D(Y) + 0
即:D(X+Y) = D(X) + D(Y)